Supporting Information

A diminutive modification in arylamine electron donors: synthesis, photophysics and solvatochromic analysis – towards the understanding of dye sensitized solar cell performances

Venkatesan Srinivasan,¹ Murugesan Panneer,² Madhavan Jaccob,² Nagaraj Pavithra,³ Sambandam Anandan,³ Arunkumar Kathiravan^{1*}

¹ National Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai – 600 113, Tamil Nadu, India

² Department of Chemistry, Loyola College, Chennai – 600 034, Tamil Nadu, India

³ Nanomaterials and Solar Energy Conversion Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli - 620 015, Tamil Nadu, India

Scheme S1: Synthetic route of Arylamine dyes

Synthesis of [5-(4-Diphenylamino-benzaldene)-4-oxo-2-thioxo-thiozolidin-3-yl]-acetic acid (TRA):

A mixture of 4-(Diphenylamino) benzaldehyde (0.39 g, 1.46 mmol), 4-oxo-2-thioxo-3thiozolidinyl acetic acid (0.41 g, 2.19 mmol), acetic acid (5 mL) and ammonium acetate (4 mg) was stirred at reflux 12 h. The resultant mixture was poured into ice-cold water to give a Orange colour precipitate. This was filtered, washed thoroughly with water and then dried. The crude product was purified by silica gel column chromatography using chloroform-methanol (v/v: 10: 0.5) to obtain a red solid. Yield: 53.1%. MP: > 200°C. **IR (cm⁻¹) :** 1723 (-C=O-), 1702 (-C=O-), 1571 (-C=C-). ¹**H NMR:** (DMSO-d₆, 400 MHz) δ ppm: 7.74 (s, 1H), 7.51-7.53 (d, J = 8 Hz, 2H, Aromatic), 7.38-7.42 (t, J = 16 Hz, 4H, aromatic), 7.18-7.23 (m, 6H, Aromatic), 6.89-6.91 (d, J=8Hz, 2H), 4.70 (s, 2H, CH₂COOH). ¹³C **NMR:** (DMSO-d₆, 100 MHz) δ ppm: 193.35, 167.84, 166.93, 150.66, 145.98, 134.47, 133.34, 130.49, 126.68, 125.85, 124.96, 119.76, 117.66, 45.48. MS-EI: (m/z) calcd for C₂₄H₁₈N₂O₃S₂: 446.08, Found: 446.09.

Synthesis of [5-(4-Carbazol-9-yl-benzylidene)-4-oxo-2-thioxo-thiazolidin-3-yl]-acetic acid (CRA):

A mixture of N-(4-Formyl phenyl) carbazole (0.40 g, 1.47 mmol), 4-oxo-2-thioxo-3thiozolidinyl acetic acid (0.42 g, 2.20 mmol), acetic acid (5 mL) and ammonium acetate (4 mg) was stirred at reflux 12 h. The resultant mixture was poured into ice-cold water to give a yellow colour precipitate. This was filtered, washed thoroughly with water and then dried. The crude product was purified by silica gel column chromatography using chloroform-methanol (v/v: 10 : 0.5) to obtain a red solid. **Yield**: 74.99%. **Melting point :** > 200°C. **IR (cm⁻¹):** 1746 (-C=O-), 1703 (-C=O-), 1583 (-C=C-). ¹**H NMR :** (DMSO-d₆, 400 MHz) δ ppm: 13.50 (br s, 1H, COOH), 8.26-8.28 (d,2H,J=8Hz,Aromatic), 7.97-8.00 (d, J = 12 Hz, 2H, aromatic), 7.87-7.89 (d, J = 8 Hz, 2H, aromatic), 7.53-7.55 (d, J = 8Hz, 2H, aromatic), 7.45-7.49 (m, 2H),7.32-7.35 (m,2H,Aromatic), 4.79 (s,2H,CH₂COOH). ¹³C **NMR:**(DMSOd₆, 100MHz) δ ppm:193.54, 167.78, 166.89, 139.97, 139.6, 133.49, 133.13, 131.92, 127.54, 126.98, 123.65, 122.57, 121.18, 121.13, 110.37, 45.57. MS-EI :(m/z) calcd for C₂₄H₁₆N₂O₃S₂: 444.06, Found: 444.11.

Synthesis of [4-Oxo-5-(4-pyrrolidin-1-yl-benzylidene)-2-thioxo-thiazolidin-3-yl]-acetic acid (PyRA):

A mixture of 4-(1-Pyrrolidino) benzaldehyde (0.40 g, 2.29 mmol), 4-oxo-2-thioxo-3thiozolidinyl acetic acid (0.65 g, 3.44 mmol), acetic acid (5 mL) and ammonium acetate (4 mg) was stirred at reflux 12 h. The resultant mixture was poured into ice-cold water to give a Dark Red colour precipitate. This was filtered, washed thoroughly with water and then dried. The crude product was purified by silica gel column chromatography using chloroform-methanol (v/v: 10: 0.5) to obtain a red solid. **Yield**: 72.1%. **Melting point**: > 200°C. **IR (cm⁻¹) :** 1699 (-C=O-), 1612 (-C=O-), 1561 (-C=C-). ¹H NMR (DMSO-d₆, 400 MHz) δ ppm: 7.72 (s, 1H), 7.47-7.50 (d, J = 12 Hz, 2H, aromatic), 6.68-6.70 (d, J = 8 Hz, 2H, aromatic), 4.70 (s, 2H, CH₂COOH), 1.96-1.99 (m, 6H) ¹³C NMR: (DMSO-d₆, 100MHz) δ ppm: 192.94, 167.94, 166.87, 150.08, 136.03,134.06, 119.87, 113.04, 113.01, 47.89, 45.50,25.37. MS-EI:(m/z) calcd for C₁₆H₁₆N₂O₃S₂: 348.06, Found: 348.08.

Figure S1: ¹H NMR spectrum of TRA in DMSO – d_6

Figure S2: ¹³C NMR spectrum of TRA in DMSO $- d_6$

Figure S3: ¹H NMR spectrum of CRA in DMSO – d_6

Figure S4: ¹³C NMR spectrum of CRA in DMSO $- d_6$

Figure S5: ¹H NMR spectrum of PyRA in DMSO – d_6

Figure S6: ¹³C NMR spectrum of PyRA in DMSO $- d_6$

Figure S7: Mass spectrum of TRA

Figure S8: Mass spectrum of CRA

Figure S9: Mass spectrum of PyRA

Figure S10: Normalized absorption spectra of TRA in various solvents

Figure S11: Normalized absorption spectra of CRA in various solvents

Figure S12: Normalized absorption spectra of PyRA in various solvents

Figure S13: Normalized fluorescence spectra of TRA in various solvents

Figure S14: Normalized fluorescence spectra of CRA in various solvents

Figure S15: Normalized fluorescence spectra of PyRA in various solvents

Figure S16: CV and DPV plots of arylamine dyes

Figure S17: Bode phase plots of TRA, CRA and PyRA devices.

Solvents	Abs (nm)			Emi (nm)			$\Delta v (cm^{-1})$			
	TRA	CRA	PyRA	TRA	CRA	PyRA	TRA	CRA	PyRA	Δy
DMSO	461	415	477	600	581	557	4950	6972	2967	0.2634
ACN	462	407	472	603	591	555	5210	7652	3213	0.3055
DMF	456	405	469	587	561	544	4865	7054	3006	0.2744
МеОН	456	402	466	587	543	550	4971	6487	3343	0.3086
EtOH	456	405	465	582	533	542	4670	5964	3009	0.2887
Acetone	463	409	472	600	578	550	4922	7266	3004	0.2843
IPA	458	407	460	571	543	516	4338	5913	2555	0.2721
THF	463	411	470	567	533	528	4054	5580	2408	0.2096
EA	458	408	465	560	531	529	4103	5748	2637	0.2010
Toluene	471	421	469	532	495	509	2434	3550	1675	0.0133
Dioxane	463	414	468	543	507	516	3296	4585	2545	0.0246
DCM	474	422	483	603	565	545	4513	5997	2355	0.2170

Table S1: Absorption maxima, emission maxima and Stokes' shift of dyes in various solvents