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Numerical solution process details

Adapted equations and boundary conditions

The specific method we used to solve our equations are the relaxation method for ‘Two

Point Boundary Value Problems’ in Numerical Recipes in Fortran.1 Here, for convenience,

we repeat these five first differential equations:

Jp = −eDp
∂p

∂x
+ epµpF ; Jn = eDn

∂n

∂x
+ enµnF

∂Jn
∂x

= −eG+ eR;
∂Jp
∂x

= eG− eR

∂F

∂x
= e

p− n
εε0

(1)

and five boundary conductions:

Jn|x=d = 0; Jp|x=0 = 0; Fx=0 = F0

Fx=d = Fd; n|x=0p|x=d = NcNve
Ebgap−V

−kT

(2)

If we want to use the “Two point Boundary Value Problems” method in Numerical Recipes in

Fortran,1 all of the equation must be the first order differential and the boundary condition

at two point is not coupled. While, the last boundary condition in Equation 2 is coupled. To

decouple we add a new function n0(x) = n|x=0, which is the electron density at x=0. It is a

constant. To simplify, we set Jn = Jn/e,Jp = J/e, n = ne and p = pe. We rewrite Equations

1 in the form used in Numerical Recipes in Fortran ( ∂y
∂x

= g(x, y)):

∂p

∂x
= (pµpF − Jp)/Dp;

∂n

∂x
= (Jn − nµnF )/Dn

∂Jn
∂x

= −G+R;
∂Jp
∂x

= G−R

∂F

∂x
=
p− n
εε0

;
∂n0

∂x
= 0

(3)
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and boundary conditions:

Jp|x=0 = 0; F |x=0 = F0; n|x=0 = n0|x=0

F |x=d = Fd; Jn|x=d = 0; p|x=d =
NcNv

n0|x=d
e
Ebgap−V

−kT

(4)

To implement these six (total number of equations, noted as N in Numerical recipes)

equations into Fortran code, differential Equations 3 are approximated by finite-difference

equations (FDEs) on a grid of points (total point number, noted as M in Numerical recipes,

we will discuss it in section Mesh test) that spans whole perovskite layer:

n0(k)− n0(k − 1) = 0

Jp(k)− Jp(k − 1)− h(G−R) = 0

F (k)− F (k − 1)− h(
p(k)+p(k−1)

2
− n(k)+n(k−1)

2

εε0
) = 0

n(k)− n(k − 1)− h(
Jn(k) + Jn(k − 1)

2Dn

− µn
Dn

n(k) + n(k − 1)

2

F (k) + F (k − 1)

2
) = 0

p(k)− p(k − 1)− h(
µp
Dp

p(k) + p(k − 1)

2

F (k) + F (k − 1)

2
− Jp(k) + Jp(k − 1)

2Dp

) = 0

Jn(k)− Jn(k − 1)− h(−G+R) = 0

(5)

where h = x(k) − x(k − 1). Then the problem becomes FDEs on a mesh of M points, a

solution consists of values for N dependent functions given at each of the M mesh points,

or N ×M variables in all. The method determines the solution by starting with a guess and

improving it, iteratively. As the iterations improve the solution, the result is said to relax

to the true solution.

General procedures

To simplify illustration, we set all these parameters as: y1 = n0; y2 = Jp; y3 = F ; y4 =

n; y5 = p; y6 = Jn. We use the notation yk to refer the entire set of dependent variables y1,

y2, . . ., y6 at point xk, and use the notation gk to refer all the functions. Then Equation 5
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can be written:

0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1,yk,yk−1) (6)

Where Ek is the errors of guessed solution. Equation 6 provides six equations coupling

twelve variables at point k, k − 1. There are M − 1 points, k = 2, 3, ...,M . Thus, Equation

6 provides a total of (M − 1)N equations for 6M unknowns. The remaining six equations

come from boundary conditions.

At the first boundary (x = 0) , we have 3 conditions (first three in Equation 4)

0 = E1 ≡ B(x1,y1) (7)

while at the second boundary (x = d, last three in Equation 4)

0 = EM+1 ≡ C(xM ,yM) (8)

The solution of Equation 6, 7 and 8 consist of the six variables yj at the M points xk. We

give a initial guess (we will give it later), then corrections was applied to approximating

to the solution. The correction are developed by expanding the FDEs in first-order Taylor

series with respect to small changes ∆y. At an interior point (2 < k < M), this gives:

Ek(yk + ∆yk,yk−1 + ∆yk−1) ≈ Ek(yk,yk−1) +
N∑
i=1

∂Ek

∂yi,k−1

∆yi,k−1 +
N∑
i=1

∂Ek

∂yi,k
∆yi,k (9)

To approach a solution, E(y+∆y) should be updated to be zero. The general set of equations

at an interior point can be written in matrix form as

6∑
i=1

Sj,i∆yi,k−1 +
12∑

i=6+1

Sj,i∆yi−6,k = −Ej,k, j = 1, 2, ...6 (10)

where, Sj,i = ∂Ek
∂yi,k−1

, Sj,i+6 = ∂Ek
∂yi,k

. The dimension of Sj,i is 6× 12 at each k.

4



Figure 1: Matrix structure of a set of linear six FDEs with three boundary conditions imposed
at both endpoints. One X represents a coefficient of the FDEs, V represents a component of
the unknown solution vector, and B is a component of the known right-hand side. Empty
spaces represent zeros.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order Taylor

series for increments that improve the solution. Since E1 depends only on y1, we find at the

first boundary:

6∑
i=1

Sj,i∆yi,1 = −Ej,1, j = 4, 5, 6 (11)

where Sj,i =
∂Ej,1
∂yn,1

. At the second boundary,

6∑
i=1

Sj,i∆yi,M = −Ej,M+1, j = 1, 2, 3 (12)

where Sj,i =
∂Ej,M+1

∂yn,M
.

We thus have in Equations 10, 11 and 12 a set of linear equations to be solved for the

correction ∆y, iterating until the corrections are sufficiently small. The equations have a
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special structure, because each Sj,i couples only points k, k−1. Figure 1 shows the structure

of the complete matrix equation for the case of M = 3. There are 3 boundary conditions at

the first and at the second boundary. The block boxed by red lines at left-up corner comes

from the boundary condition Sj,i at point k = 1. Next two are the Sj,i from k = 2 and

k = 3. The last block is corresponding to the 3 second boundary conditions. This special

form matrix is diagonalizated by splitting into it M small matrix, and then diagonalizate

the matrix from the first point k = 1 to the last points k = M + 1. For more details, please

check Numerical recipes.

S matrix

S matrix varies for different models. Here, we use direct recombination model (R = r×n×p,

Equation 12 in main text) as an example. For SRH model and other models, the Sj,i at each

k points can be obtained by its definition in Equation 6, 7 and 8. To simplify illustration,

we set all these parameters as: y1 = n0; y2 = Jp; y3 = F ; y4 = n; y5 = p; y6 = Jn. Here,

we only shows non-zero element. h is the size of discretion, h = x(k) − x(k − 1) = d
M

. We

substitute µ with Einstein relation µ = eD
kT

= D
0.026

and R with rnp. Equation 5 can be

rewritten:

y1(k)− y1(k − 1) ≡ E1 = 0

y2(k)− y2(k − 1)− h(G− ry5(k) + y5(k − 1)

2

y4(k) + y4(k − 1)

2
) ≡ E2 = 0

y3(k)− y3(k − 1)− h(
y5(k)+y5(k−1)

2
− y4(k)+y4(k−1)

2

εε0
) ≡ E3 = 0

y4(k)− y4(k − 1)− h(
y6(k) + y6(k − 1)

2Dp

− µp
Dp

y4(k) + y4(k − 1)

2

y3(k) + y3(k − 1)

2
) ≡ E4 = 0

y5(k)− y5(k − 1)− h(−y2(k) + y2(k − 1)

2Dn

+
µn
Dn

y5(k) + y5(k − 1)

2

y3(k) + y3(k − 1)

2
) ≡ E5 = 0

y6(k)− y6(k − 1)− h(−G+ r
y5(k) + y5(k − 1)

2

y4(k) + y4(k − 1)

2
) ≡ E6 = 0

(13)
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For convenience’s sake, we define tmp1 = y(4, k) + y(4, k − 1); tmp2 = y(5, k) + y(5, k −

1); tmp = tmp1 + tmp2. The S matrix is shown below written in Fortran. Here, LT is

the recombination coefficient r, ne is six (the number if equation, noted as N in Numerical

recipes). S(i,jsf) is the last element for calculating E, then jsf= 2N + 1.

For interior points k = 2, 3, . . . ,M

s(1,1)=-1; s(1,ne+1)=1; s(1,jsf)=y(1,k)-y(1,k-1)

s(2,4)=0.25*h*tmp2*LT; s(2,ne+4)=s(2,4); s(2,5)=0.25*h*tmp1*LT

s(2,ne+5)=s(2,5); s(2,2)=-1.0 ; s(2,ne+2)=1.0

s(2,jsf)=y(2,k)-y(2,k-1)+h*((0.25*tmp1*tmp2*LT-ni*ni)-g)

s(3,4)=0.5*h/(εε0); s(3,ne+4)=s(3,4)

s(3,5)=-0.5*h/(εε0); s(3,ne+5)=s(3,5)

s(3,3)=-1.0; s(3,ne+3)=1.0

s(3,jsf)=y(3,k)-y(3,k-1)-0.5*h*(tmp2-tmp1)/(εε0)

s(4,4)=-1.+h*(y(3,k)+y(3,k-1))/(4*kt); s(4,6)=-.5*h/de

s(4,ne+4)=1.+h*(y(3,k)+y(3,k-1))/(4*kt); s(4,ne+6)=-.5*h/de

s(4,3)=h*tmp1/(4*kt) ; s(4,ne+3)=h*tmp1/(4*kt)

s(4,jsf)=y(4,k)-y(4,k-1)-0.5*h*((y(6,k)+y(6,k-1))/de-tmp1*(y(3,k)+y(3,k-1))/(2*kt))

s(5,5)=-1.-h*(y(3,k)+y(3,k-1))/(4*kt); s(5,2)=0.5*h/dh

s(5,ne+5)=1.-h*(y(3,k)+y(3,k-1))/(4*kt); s(5,ne+2)=0.5*h/dh

s(5,3)=-h*tmp2/(4*kt) ; s(5,ne+3)=-h*tmp2/(4*kt)

s(5,jsf)=y(5,k)-y(5,k-1)+0.5*h*((y(2,k)+y(2,k-1))/dh-tmp2*(y(3,k)+y(3,k-1))/(2*kt))

s(6,6)=-1.0; s(6,ne+6)=1.0
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s(6,4)=-0.25*h*tmp2*LT; s(6,ne+4)= s(6,4)

s(6,5)=-0.25*h*tmp1*LT ; s(6,ne+5)=s(6,5)

s(6,jsf)=y(6,k)-y(6,k-1)-h*((0.25*tmp1*tmp2*LT-ni*ni)-g)

At the first boundary(x=0, k=1)

s(4,ne+3)=1.0; s(5,ne+2)=1.0

s(6,ne+4)=1.0; s(6,ne+1)=-1.0

s(4,jsf)=y(3,1)-E0; s(5,jsf)=y(2,1); s(6,jsf)=y(4,1)-y(1,1)

At the second boundary(x=d, k=M)

s(1,ne+3)=1.0; s(2,ne+6)=1.0; s(3,ne+5)=1.0

s(3,ne+1)=exp(v/(kt))*n0*n0/(y(1,m)*y(1,m))

s(1,jsf)=y(3,m)-Ed; s(2,jsf)=y(6,m)

s(3,jsf)=y(5,m)-exp(v/(kt))*n0*n0/y(1,m)

Initial Guess

In our model, the applied voltage (V) is implemented as one boundary condition. The

current density is obtained from solution. We start with V = 0V , giving a initial guess,

solving equations. Then, the solution of V = 0V will be used as the initial guess solution

under applied voltage V = 10mV . We increase the voltage with increment of 10 mV, until

The desired voltage reached. The first initial guess are shown as below, where D is the

thickness of perovskite layer. myE0 = V/D.

The first initial guess

do k=1,M

x(k)=(k-1)*h

y(1,k)=n0*exp(v/(2*kt))

y(2,k)=0.01*x(k)/D
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y(3,k)=myE0

y(4,k)=n0*exp(v/(2*kt))*EXP(x(k)/D)

y(5,k)=n0*exp(v/(2*kt))*EXP(1-x(k)/D)

y(6,k)=(D-x(k))*0.01/D

end do

Error calculation and converged criteria

The total error is calculated by

Error =
1

6M

M∑
k=1

6∑
j=1

|∆y(j, k)|
scalv(j)

(14)

Where scalv(j) is the scale of variable y(j). In Numerical recipes, the scalv vector is defined

by a constant vector. In this numerical model, charge densities are in the scale of 1010 to

1018. If we define its scalv as a constant, the error should in a very wide range. Therefore,

we set scalv(j) as the maximum value of previous y(j, k). The convergence criteria (conv)

is 1.0−20. When error is smaller than conv, the solution was reached.

Charges densities, electric field and currents in perovskite solar

cells

Mesh test

Here, we are going to test how many discretion points (M) are enough for our model. Models

with and without interface recombination are carried out. As shown in Figure 5, for model

without interface recombination, 801 points is enough to get a accurate solution. For the

sake of safety, we set M = 3001 for model without interface recombinations. While, for the

model with interface, more points are needed. We performed more test with an interface

recombination with 2nm thickness and 1 ns charge carriers lifetime. It is found that there is
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Figure 2: I-V charater curve simulated with boundary fields are F (x = 0) = F (x = d) = V/d.
Other parameters are shown in manuscripts Table 1. Charges densities, currents and field
at A, B and C points are shown in Figure 3.

no much difference between the solutions solved with M = 20001 and M = 300001. As the

computation time is about proportional to M points, high density points needs long time.

Therefore, we choose M = 20001 for models with interface recombination for time-saving.

Table 1: Parameters for M test.

α Absorption coefficient 5.7× 104cm−1.2 T Temperature 300 K

IPCE IPCE 100 % Il Light intensity 1.5 AM

Nc,Nv Density of States 3.97× 1018cm−3.3 Bgap Band gap 1.55 eV4

Dn Electron diffusion coefficient 0.017 cm2s−1.5 τ Lifetime 736 ns4

Dp Hole diffusion coefficient 0.011 cm2s−1.5 F0, Fd Field at boundary V
d

d Perovskite thickness 350 nm4 τintf Interface Lifetime 1 ns

Parallelization

With a given V, J is determined by solving Equation 3. Every solution only give one point

in J-V curve of a solar cell. On the other hand, the mesh points need to be large in order to

achieve accurate solutions. Hence, to draw a J-V curve of a solar cell, it is time-consuming.

Here, we implement MPI into our code for parallel calculation. The solution matrix is
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Figure 3: Simulated charges densities, electric fields and currents in perovskite solar cells.
Left shows parameters at short circuit, point A in figure 2. Right shows parameters near
open circiut, point B and C in figure 2.. Boundary fields are F (x = 0) = F (x = d) = V/d.
Other parameters are shown in manuscripts Table 1. The enlarged current distribtion near
TiO2 side is shown in Figure 4.

Figure 4: Currents near TiO2 side in perovskite solar cells near open circiut simulated with
interfaces. Boundary fields are F (x = 0) = F (x = d) = V/d. Other parameters are shown
in manuscripts Table 1.
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Figure 5: I-V curves of a solar cell with different number of mech points and interface
recombination thickness. In the interface recombination region, charge carrier’s lifetime is
set as 1 ns. More parameters are shown in Table 1
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Figure 6: I-V curves of a solar cell with different number of mech. The interface recom-
biantion thickness is 2 nm. More parameters are shown in Table 1

diagonalised by splitting it into M 6× 13 submatrixs and diagonalising the submatrix from

k = 1 to k = M . It is not wise to divide this process into several parts and to diagonalise

on separated CPUs. Therefore, we scatter all of the V array to every CPU, and then solve

them separately. Lastly, all of the solutions are collected by MPI GATHERV function.
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Lifetime dependence:

Figure 7: Lifetime depends Voc with various lifetimes.
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Figure 8: Solar cell’s performance with various lifetimes with interface recombination.
F0=Fd=V0/d.

Figure 9: Solar cell’s performance with various lifetimes without interface recombination.
F0=Fd=V0/d.
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Mobility dependence:

Figure 10: Solar cell’s performance with mobilities. Both of the electron and hole mobilities
increase at the same to certain times of 0.65(electron) and 0.42 (hole) cm2/V s, corresponding
to diffusion coefficient of 0.017cm2/s and 0.011cm2/s. F0=Fd=V0/d.
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Temperature dependence:

Figure 11: Temperature dependence with diffusion coefficients change. The thickness of
simulated solar cell is 350 nm. The band gap is 1.55 eV. The interface recombination width
is 5 nm and its lifetime is 5 ns. The lifetime in cell is assumed to be 736 ns. The cells work
under 1 sun (1.5AM).
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Thickness depends performance

Figure 12: The thickness dependence PCEs. The optimum thickness is depended on the
diffusion length. Modeled with interface. F0 = Fd = 0
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Figure 13: The thickness dependence PCEs. The optimum thickness is depended on the
diffusion length. Modeled without interface. F0 = Fd = V/d

Figure 14: The thickness dependence PCEs. The optimum thickness is depended on the
diffusion length. Modeled with interface. F0 = Fd = V/d
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Structure optimization

Figure 15: Models comparison of T and S model with or without interface, with life time of
736 ns or 50 ns. Fx=0 = Fx=d = V

d
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Figure 16: Models comparison of T and S model with or without interface, with life time of
736 ns or 50 ns. Fx=0 = Fx=d = 0

Recombination coefficient estimation

As we have illustrated before that Equation 14 is the charge carriers lifetime educe from

Equation 12 under small charge injection under illumination.6,7 While in real case, the con-

dition of small injection is not satisfied. But in experiment only lifetime of the charge

carriers are available. Hence, we need to educe the recombination coefficient from lifetime.

The lifetime is measure as:2,5 They give a short time pulse illumination and then remove

it, and measure the charge density. Their process is shown in figure 17. At first, the cell is

irradiated by a pulse, during this period time photon generate charge carriers are become

more and more until the charge density are saturated. Then remove the pulse, the charge

density decrease with time past. After a lifetime period, the charge density become the n0

e
.

Here, we will give the accurate relationship between the lifetime and recombination rate. In

experiment, because there is no charge movement and no dopant in perovskite materials,

hence, the electron density should be the same with hole density (n = p). Then charge
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Figure 17: Measurement of lifetime: In the yellow shadow region, the cell is irradiated by
the pulse, in this region photon generate charge carriers are become more and more until the
charge density are saturated. Gray shadow covered region means the irradiation have been
removed, the charge density decrease with time past.

carriers recombination rate can be expressed as

dn

dt
= −R = −r × n× p = −rn2

then we have:

n =
1

r(t− c)

The measurement process is shown in figure 17. If the charge density dynamics in solar

cell have reached a balance before illumination pulse removement. We define the time when

pulse remove is zero. At t = 0, the charge density is n0, then we can get c = −1
rn0

. Hence:

n =
n0

rn0t+ 1
(15)

Uniformly distributed charge density

After the pulse removed, if the charge density in the device is uniformly distributed, at time

τ , the charge density become n = n0

e
= n0

rn0τ+1
. Therefore, the lifetime can be expressed as:

τ =
e− 1

rn0

(16)
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That’s to say the charge carriers lifetime is depend on the initial charge density rather than

a certain value. Larger charge density will lead to a short lifetime. If the charge density have

reached a balance before measure the lifetime, the charge generation rate should be equal to

the recombination rate: G/d = r × n2
0. Combining with equation (16), we can get

n0 =
Gτ

L(e− 1)
(17)

Also we can know the recombination coefficient:

r =
L(e− 1)2

Gτ 2
= 3.51499× 10−6cm3/s (18)

Those calculations is based on the assumption that carriers lifetime is 736 ns and charges

are generated uniformly.

Estimation of the initial light intensity at x = 0

Before the pulse remove, the total generated carriers should be the same with the total

recombined carriers. Hence:

∫ d

0

I0
L
e−x/Ldx =

∫ d

0

rn2
0e

−2x/Ldx

I0

(
1− e−

d
L

)
=

1

2
Ln2

0r
(

1− e−
2d
L

)
We get:

n0 =

√
2I0(e

− d
L − 1)

Lr(e−
2d
L − 1)

=

√
2I0

Lr(e−
d
L + 1)
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Decay exponentially-1

For a more accurate case, the charge density near the light surface is much higher than

the charge density inside thin film. This high density will play a very important role in

the process of recombination. If the generate rate is exponential decay, the lifetime get

more complicated. As the charge recombination is too fast for charge transport. Based on

Equation 16, the lifetime at x is

τ(x) =
e− 1

rnx
(19)

Where nx = n0e
−x
L , L is the decay depth. n0 is the initial light intensity at x = 0. It will

be estimated later. The charge density at x and time t is n(x, t) = n0e
−x
L × e

−t
τ(x) . Then the

lifetime measured in experiment is the time make below equation true:

∫ d
0
n0e

−x
L × e

−t
τ(x)dx∫ d

0
n0e

−x
L dx

=
1

e
(20)

We get,

(e− 1)

(
e−

rn0te
− d
L

e−1 − e−
rn0t
e−1

)
rn0t(1− e−

d
L )

=
1

e
(21)

If we use the data provided by Zhou,4 (τ = 736 ns, d=350 nm, band gap = 1.55 eV), then r is

calculated as 1.23× 10−9cm3/s. The decay curves from the experiment and decay estimated

with r = 1.23× 10−9cm3/s are shown in figure 18 left. As this method is an approximation,

if we change r to 1.03× 10−9cm3/s, its fit better, as shown in Figure 18 right.

Decay directly-2

Rewrite the equation 15, the carriers density at x and time t is

n(x) =
n0(x)

rn0(x)t+ 1
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Figure 18: Coefficient estimation. Decay exponentially-1

If the charge carriers is exponentially occupied at t = 0, n0(x) = I0
L
e

−x
L , then the total charge

density at time t is

∫ d

0

n0e
− x
L

n0rte
− x
L + 1

dx

=
−L log

(
ed/L + n0rt

)
+ d+ L log(n0rt+ 1)

rt

The initial density is
∫ d
0
n0e

−x
L dx

−L log
(
ed/L + n0rt

)
+ d+ L log(n0rt+ 1)

n0rt
(
L− Le− d

L

) =
1

e
(22)

Figure 19: Coefficient estimation. Decay directly-2

If we use the data provided by Zhou,4 (τ = 736 ns, d=350 nm, band gap = 1.55 eV),
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then r is calculated as 1.33× 10−9cm3/s. The decay curves from the experiment and decay

estimated with r = 1.33 × 10−9cm3/s are shown in Figure 19. Due to its poor agreement,

this method is abandoned.
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