Supplementary Information

Predictions of the physicochemical properties of amino acid side

chain analogs using molecular simulation

Alauddin Ahmed‡ and Stanley I. Sandler*

Center for Molecular and Engineering Thermodynamics, Department of Chemical and

Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA

‡ Current Address: Mechanical Engineering Department, University of Michigan, Ann

Arbor, Michigan 48109, USA

*Corresponding Author: sandler@udel.edu

(Version 21 January 2016)

Figure S1: Octanol-water partition coefficients calculated and compared with recommended values (data shown in the Table S1).

			Radzicka	
			and	Katrizky
Amino Acid	Side Chain	Sangster ^{1,2} Recommended	Wolfenden ³	et al. ⁴
Ala (Alanine)	Methane	1.09	0.38	1.05
Phe (Phenylalanine)	Toluene	2.73	1.53	2.73
Thr (Threonine)	Ethanol	-0.3	0.20	-0.47
Ser (Serine)	Methanol	-0.74	0.03	-0.82
Tyr (Tyrosine)	p-Cresol	1.97	1.19	
Val (Valine)	Propane	2.36	0.86	2.43

Table S1: Octanol-water partition coefficients from different sources.¹⁻⁴

Table S2a: Self-solvation free energies (in kcal/mol) of 1-octanol.

Force Field	Experiment	ΔG_{self}
CGenFF/ParamChem (charge)	-8.41	-10.02 ± 0.67
GAFF/AM1-BCC (charge)		-8.31 ± 0.24
OPLS-AA (default charge)		-7.05 ± 0.47

Table S2b: Self-solvation free energies (in kcal/mol) of amino acid side chain analogs (ΔG_{self}).

Amino acid	Side chain analog/other	Experimental	CGenFF/ParamChem (charge)	GAFF/AM1- BCC (charge)	OPLS-AA
Ala (Alanine)	Methane				
Phe (Phenylalanine)	Toluene	-5.17	-4.45 ± 0.21	-3.98 ± 0.21	-4.86 ± 0.18
Thr (Threonine)	Ethanol	-5.08	-5.16 ± 0.24	-4.60 ± 0.17	$\textbf{-4.58} \pm 0.21$
Ser (Serine)	Methanol	-4.90	-4.50 ± 0.17	$\textbf{-3.79}\pm0.20$	$\textbf{-4.65} \pm 0.14$
Tyr (Tyrosine)	p-Cresol	-8.46	-7.86 ± 0.36	-7.69 ± 0.33	$\textbf{-8.26} \pm 0.51$
Val (Valine)	Propane				
AUI	E (kcal/mol)		0.45	0.90	0.33
RMS	E (kcal/mol)		0.51	0.94	0.34

Table S3: Hydration free energies (in kcal/mol) of amino acid side chain analogs (ΔG_{wat}).

Amino acid	Side chain analog	Experimental	CGenFF/ParamChem (charge)	GAFF/AM1- BCC (charge) ⁵	OPLS-AA ⁶
Ala (Alanine)	Methane	1.95	2.44 ± 0.03	2.54 ± 0.01	2.31 ± 0.02
Phe (Phenylalanine)	Toluene	-0.78	0.24 ± 0.05	-0.71 ± 0.02	-0.54 ± 0.04
Thr (Threonine)	Ethanol	-5.03	-4.52 ± 0.04	-3.45 ± 0.03	-4.11 ± 0.03
Ser (Serine)	Methanol	-5.03	-4.58 ± 0.03	-3.48 ± 0.01	-4.36 ± 0.02
Tyr (Tyrosine)	p-Cresol	-6.11	-4.02 ± 0.05	-5.36 ± 0.02	-5.25 ± 0.04
Val (Valine)	Propane	1.99	2.42 ± 0.03	2.56 ± 0.02	2.59 ± 0.03
AU	JE (kcal/mol)		0.83	0.85	0.61
RM	ISE (kcal/mol)		1.02	1.01	0.66

Amino acid	Side chain analog	Experiment	CGenFF/ParamChem (charge)	GAFF/AM1-BCC (charge)	OPLS-AA
Ala (Alanine)	Methane	0.52	0.76 ± 0.18	1.03 ± 0.19	0.68 ± 0.12
Phe (Phenylalanine)	Toluene	-4.51	-3.98 ± 0.20	-3.27 ± 0.26	-3.88 ± 0.35
Thr (Threonine)	Ethanol	-4.39	-4.15 ± 0.26	-3.65 ± 0.33	-4.31 ± 0.35
Ser (Serine)	Methanol	-3.91	-3.24 ± 0.29	-3.07 ± 0.24	-2.86 ± 0.29
Tyr (Tyrosine)	p-Cresol	-8.84	-8.07 ± 0.35	-7.44 ± 0.24	$\textbf{-8.17} \pm 0.40$
Val (Valine)	Propane	-1.32	-0.53 ± 0.29	-0.62 ± 0.18	-0.30 ± 0.21
AUE (kcal/mol)			0.54	0.90	0.60
RMSI	E (kcal/mol)		0.58	0.96	0.71

Table S4: Solvation free energy (in kcal/mol) of amino acid side chain analogs in 1-octanol (ΔG_{oct}).

Table S5a: Logarithm of vapor pressures in Pa unit $(log_{10}P_{vap}^{liq})$ for 1-octanol models.

Force Field	Molecular Weight (g/mol)	Density, ρ (g/L)	Experiment	log ₁₀ P ^{liq/sol} vap
CGenFF/ParamChem (charge)	130.23	827	1.03	-0.15
GAFF/AM1-BCC (charge)				1.10
OPLS-AA				2.03

Table S5b: Logarithm of vapor pressures in Pa unit $(log_{10}P_{vap}^{liq})$ for amino acid side chain analogs.

Amino acid	Side chain analog	Molecular Weight (g/mol)	Density, <i>p</i> (g/L)	Experiment	CGenFF/ParamChem (charge)	GAFF/AM1- BCC (charge)	OPLS- AA
Ala (Alanine)	Methane	16.04		7.79			
Phe (Phenylalanine)	Toluene	92.14	852	3.58	4.10	4.44	3.79
Thr (Threonine)	Ethanol	46.07	799	3.90	3.85	4.26	4.26
Ser (Serine)	Methanol	32.04	759	4.23	4.48	4.18	4.36

Tyr (Tyrosine)	p-Cresol	108.13	1033				
Val (Valine)	Propane	44.1		5.98			
	AUE (log unit)			0.27	0.43	0.24
	RMSE	(log unit)			0.33	0.54	0.25

Table S6: Logarithms of solubilities in mol/L units $(log_{10}S_{wat})$ of amino acid side chain analogs in water calculated from vapor pressures (P_{vap}^{liq}) and solvation free energies in water (ΔG_{wat}) using eqn. (3).

Amino acid	Side chain analog	Molecular Weight (g/mol)	Density, p (g/L)	Experiment	CGenFF/ParamChem (charge)	GAFF/AM1- BCC (charge)	OPLS- AA
Ala (Alanine)	Methane	16.04		-2.86			
Phe (Phenylalanine)	Toluene	92.14	852	-2.24	-2.47	-1.43	-2.21
Thr (Threonine)	Ethanol	46.07	799	1.34	0.77	0.40	0.88
Ser (Serine)	Methanol	32.04	759	1.49	1.44	0.34	1.16
Tyr (Tyrosine)	p-Cresol	108.13	1033				
Val (Valine)	Propane	44.1		-2.85			
	AUE	(log unit)			0.28	0.97	0.28
	RMSE	(log unit)			0.35	0.98	0.33

Table S7: Logarithms of solubilities in mol/L units $(log_{10}S_{oct})$ of amino acid side chain analogs in 1-octanol calculated from vapor pressures (P_{vap}^{liq}) and solvation free energies in 1-octanol ($\Delta G_{oct})$ using eqn. (3).

Amino acid	Side chain analog/other	Molecular Weight (g/mol)	Density, p (g/L)	Experiment	CGenFF/ParamChem (charge)	GAFF/AM1- BCC (charge)	OPLS- AA
Ala (Alanine)	Methane	16.04		2.22			
Phe (Phenylalanine)	Toluene	92.14	852	0.49	0.62	0.44	0.25
Thr (Threonine)	Ethanol	46.07	799	0.72	0.50	0.55	1.03
Ser (Serine)	Methanol	32.04	759	0.70	0.46	0.04	0.06
Tyr (Tyrosine)	<i>p</i> -Cresol	108.13	1033				
Val (Valine)	Propane	44.1					
	AUE	(log unit)			0.20	0.30	0.40
	RMSE	(log unit)			0.20	0.40	0.43

		CGenFF	GAFF	OPLS-AA
			This work +	This work +
			(Mobley et al.	(Shirts et al.
Amino Acid Analog	Experiment	This work	2009)	2003)
Ala (Alanine)	1.09	1.23 ± 0.13	1.10 ± 0.14	1.19 ± 0.09
Phe (Phenylalanine)	2.73	3.09 ± 0.15	1.87 ± 0.19	2.45 ± 0.26
Thr (Threonine)	-0.3	-0.27 ± 0.19	0.15 ± 0.24	0.15 ± 0.26
Ser (Serine)	-0.74	-0.98 ± 0.21	-0.30 ± 0.17	-1.10 ± 0.21
Tyr (Tyrosine)	1.97	2.97 ± 0.26	1.53 ± 0.17	2.14 ± 0.30
Val (Valine)	2.36	2.17 ± 0.22	2.33 ± 0.13	2.12 ± 0.17
AUE (kcal/mol)		0.33	0.37	0.27
RMSE (kcal/mol))	0.45	0.47	0.29

Table S8: Logarithms of octanol-water $(log_{10}K_{OW})$ partition coefficient of amino acid side chain analogs.

Table S9: Logarithms of air-water partition coefficient $(log_{10}K_{AW})$ of amino acid side chain analogs calculated from solvation free energies in water.

Amino acid	Side chain analog/other	Experiment	CGenFF	GAFF	OPLS-AA
Ala (Alanine)	Methane	-1.45	-1.79	-1.86	-1.69
Phe (Phenylalanine)	Toluene	0.58	-0.17	0.52	0.40
Thr (Threonine)	Ethanol	3.67	3.32	2.53	3.01
Ser (Serine)	Methanol	3.74	3.36	2.55	3.20
Tyr (Tyrosine)	p-Cresol	4.5	2.95	3.93	3.85
Val (Valine)	Propane	-1.44	-1.78	-1.88	-1.90
AUE (log	unit)		0.62	0.63	0.46
RMSE (log	g unit)		0.76	0.75	0.49

Table S10: Logarithms of air-octanol partition coefficient $({}^{log}_{10}K_{AO})$ of amino acid side chain analogs calculated from solvation free energies in 1-octanol.

Amino acid	Side chain analog/other	Experimental	CGenFF	GAFF	OPLS- AA
Ala (Alanine)	Methane	-0.38	-0.56	-0.76	-0.50
Phe (Phenylalanine)	Toluene	3.31	2.91	2.39	2.85
Thr (Threonine)	Ethanol	3.25	3.04	2.68	3.16
Ser (Serine)	Methanol	2.88	2.37	2.25	2.10
Tyr (Tyrosine)	p-Cresol	6.48	5.91	5.46	5.99
Val (Valine)	Propane	0.97	0.39	0.45	0.22
AUE (log unit)			0.41	0.67	0.45
RMSE (log unit)			0.44	0.71	0.52

Table S11a: Comparison of self-solvation free energies calculated using solvation models and force field-based molecular simulations.

Method	AUE	RMSE	
	(kcal/mol)	(kcal/mol)	
SM5.4/AM1	0.21	0.26	
SM5.4/PM3	0.19	0.20	
SM5.2R/AM1//MM3	1.63	2.51	
SM5.2R/PM3//MM3	1.17	1.75	
SM5.2R/AM1//MM2	0.30	0.35	
SM5.2R/PM3//MM2	0.29	0.29	
SM5.0R/MM3	0.74	0.96	
SM5.0R/MM2	0.26	0.36	
Simulation: CGenFF/ParamChem Charge	0.40	0.48	
Simulation: GAFF/AM1-BCC charge	0.93	0.98	
Simulation: OPLS-AA/Default Charge	0.35	0.37	

	<i>p</i> -cresol			
Method	ΔG_{self}^{expt}	$\Delta G^{sim/mod}_{self}$	Unsigned Error (kcal/mol)	
	(kcal/mol)	(kcal/mol)		
SM5.42R/HF		-9.68	1.22	
SM5.42R/HB3LYP		-9.77	1.31	
SM5.42R/AM1	0.46	-9.80	1.34	
CGenFF	-8.46	-7.86	0.60	
GAFF		-7.69	0.77	
OPLS-AA		-8.26	0.20	

Table S11b: Comparison of self-solvation free energy of *p*-cresol calculated using solvation models and force field-based molecular simulations.

Table S12a: Comparison of logarithm of vapor pressures (in Pa) calculated using solvation models and force field-based molecular simulations.

Method	AUE	RMSE
	(log unit)	(log unit)
SM5.4: AM1 ⁷⁻⁹	0.14	0.16
SM5.4: PM3 ⁷⁻⁹	0.12	0.13
SM5.2R: AM1//MM3 ⁷⁻⁹	1.17	1.84
SM5.2R: PM3//MM3 ⁷⁻⁹	0.84	1.27
SM5.2R: AM1//MM2 ⁷⁻⁹	0.21	0.25
SM5.2R: PM3//MM2 ⁷⁻⁹	0.19	0.21
SM5.0R: MM3 ⁷⁻⁹	0.53	0.69
SM5.0R: MM2 ⁷⁻⁹	0.18	0.24
Simulation: CGenFF/ParamChem (charge) (this work)	0.27	0.33
Simulation: GAFF/AM1-BCC (charge) (this work)	0.43	0.54
Simulation: OPLS-AA/ (default charge) (this work)	0.24	0.25

	Tyr (<i>p</i> -cresol)			
Method	Expt. (log unit)	$\log(P^{vap}in Pa)$	UE (log unit)	
SM5.42R/HF		2.01	0.88	
SM5.42R/HB3LYP		1.99	0.86	
SM5.42R/AM1	1.12	2.25	1.12	
CGenFF	1.13	1.60	0.47	
GAFF		1.73	0.60	
OPLS-AA		1.59	0.46	

Table S12b: Comparison of logarithm of vapor pressures (in Pa) of tyr (*p*-cresol) calculated using solvation models and force-field based molecular simulations.

 Table S13: Comparison of logarithms of sub-cooled solubility (in mol/L unit) calculated using solvation models and force field-based molecular simulations.

	Phe (Toluene)			Tyr (p-cresol)		
Method	Expt. (log unit)	log(S)	UE (log unit)	Expt.	log(S)	UE (log unit)
SM5.42R/HF		-2.00	0.24		-0.52	0.18
SM5.42R/HB3LYP		-1.88	0.36	0.50	-0.48	0.22
SM5.42R/AM1		-1.99	0.25		-0.45	0.25
CGenFF	-2.24	-2.47	0.23	-0./0	-1.92	1.22
GAFF		-1.43	0.81		-0.81	0.11
OPLS-AA		-2.21	0.03		-1.03	0.33

NPT-EE Work Flow with an Example

Preparation of Input Data Files

Ser Topology and Parameter File (ser.mmol)

```
#CGenFF Force Field Parameters
#Prepared by Alauddin, Sandler group, UD
# April 12, 2012
```

```
# Ser (Methanol)
# Number of atoms
 6
С
       -1.954
                   .117 -.419 12.011 -.0390 3.6527
                                                                     .3266 CG331
                                                                                           1
                1.221 -1.193 15.999 -.6510 3.1449
                                                                    .8043 OG311
       -1.538
Ο
                                                                                           2
                                    1.008
                                                                    .1005 HGA3
       -3.023
                  -.146
                           -.591
                                               .0900 2.3876
                                                                                           3
Н
                  -.749
                                     1.008
                                                                    .1005 HGA3
                                                .0900 2.3876
Η
       -1.301
                            -.694
                                                                                           4
       -2.292
                 1.515
                           -1.711
                                       1.008
                                                 .4200
                                                          .4000
                                                                     .1926 HGP1
                                                                                           5
Η
Η
       -1.797
                    .384
                             .656
                                       1.008
                                                 .0900
                                                          2.3876
                                                                      .1005 HGA3
                                                                                           6
 3
File created by utility MAKEMOL, package MDynaMix
 Coordinates taken from file methanol.smol
Force field from file CGEN.ff
# Number of bonds
 8
     0
            1
                   2 1.42000
                                 1792.00
                                                                 # CG331
                                                                              -OG311
     0
            1
                   3 1.11100
                                 1348.20
                                                                 # CG331
                                                                              -HGA3
     0
            1
                   4 1.11100
                                 1348.20
                                                                 # CG331
                                                                             -HGA3
     0
                   6 1.11100
                                1348.20
                                                                 # CG331
           1
                                                                             -HGA3
     0
            2
                 5
                      .96000
                                 2281.90
                                                                 # OG311
                                                                             -HGP1
#
     Urey-Bradley terms (for 1-3 neigbours)
                                                                 #
     2
         3 4 1.80200
                                22.61
                                                                    hga3
                                                                              -HGA3
     2
            3
                   6
                      1.80200
                                   22.61
                                                                 #
                                                                    HGA3
                                                                              -HGA3
                  6 1.80200
     2
           4
                                   22.61
                                                                 #
                                                                    HGA3
                                                                              -HGA3
#
   Number of angles

      192.20
      # 0G311

      192.20
      # 0G311

      192.20
      # 0G311

      148.60
      # HGA3

      148.60
      # HGA3

      148.60
      # HGA3

      148.60
      # HGA3

                   3 108.8900
     2
                                                            -CG331
                                                                       -HGA3
            1
     2
           1
                  4 108.8900
                                                             -CG331
                                                                       -HGA3
                 6 108.8900
     2
           1
                                                             -CG331
                                                                      -HGA3
     3
           1
                  4 108.4000
                                                            -CG331
                                                                      -HGA3
     3
            1
                 6 108.4000
                                                            -CG331
                                                                      -HGA3
     4
           1
                   6 108.4000
                                                            -CG331
                                                                       -HGA3
           2
                   5 106.0000
                                   240.80 # CG331
                                                                      -HGP1
     1
                                                            -OG311
   Number of torsions
#
 З
                                .000
     3
                   2
                         5
                                         .800 3 #HGA3
                                                                -CG331
                                                                          -OG311
            1
                                                                                    -HGP1
                                          .800
     4
            1
                   2
                         5
                                .000
                                                  3 #HGA3
                                                                -CG331
                                                                          -OG311
                                                                                     -HGP1
                   2
                         5
                                .000
                                          .800
                                                  3 #HGA3
                                                                -CG331
                                                                          -OG311
                                                                                    -HGP1
     6
            1
#
    Special 1-4 interactions
special
1
     Sig14 Eps14
#
  Ι
     1 3.3854
                         .0419
#
```

REFERENCES

1 J. Sangster, Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry, John Wiley & Son Ltd, New York, 1997.

- 2 Sangster Research Laboratories, http://logkow.cisti.nrc.ca/logkow/index.jsp, (accessed Oct 3, 2012).
- 3 A. Radzicka and R. Wolfenden, *Biochemistry*, 1988, 27, 1664–1670.
- 4 A. R. Katritzky, A. A. Oliferenko, P. V. Oliferenko, R. Petrukhin and D. B. Tatham, J. *Chem. Inf. Comput. Sci.*, 2003, **43**, 1794–1805.
- 5 D. L. Mobley, C. I. Bayly, M. D. Cooper, M. R. Shirts and K. A. Dill, *J. Chem. Theory. Comput.*, 2009, **5**, 350–358.
- 6 M. R. Shirts, J. W. Pitera, W. C. Swope and V. S. Pande, J. Chem. Phys. 2003, 119, 5740– 5761.
- 7 P. Winget, G. D. Hawkins, C. J. Cramer and D. G. Truhlar, *J. Chem. Phys. B*, 2000, **104**, 4726–4734.
- 8 J. D. Thompson, C. J. Cramer and D. G. Truhlar, J. Chem. Phys, 2003, 119, 1661–1670.
- 9 A. V. Marenich, C. P. Kelly, J. D. Thompson, G. D. Hawkins, C. C. Chambers, D. J. Giesen, P. Winget, C. J. Cramer and D. G. Truhlar, *Minnesota Solvation Database Version 2007*, University of Minnesota: Minneapolis, MN, 2009.