A Comparative Computational Study on the Hydrogen Adsorption on the Ag⁺, Cu⁺, Mg²⁺, Cd²⁺, and Zn²⁺ Cationic Sites in Zeolites

Paweł Kozyra, Witold Piskorz

Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland

March 4, 2016

Supporting Information

Interaction Cu(II) site with hydrogen

In the copper containing zeolites some Cu^{2+} cations undergo autoreduction forming Cu^+ cations while the rest of them remain in the original oxidation state and both constitute adsorption centres for hydrogen. For that reason, even though the Cu^{2+} cation, having d⁹ configuration, is the open-shell system, contrary to those discussed in this article, we have performed analogous computation. For the Cu^{2+} cation, despite it having unpaired electron, the spin density does not change upon interaction with hydrogen molecule and this interaction resembles that for Mg(II), Cd(II), and Zn(II).

The distances between the hydrogen molecule and the Cu^{2+} cation are close to those for Zn^{2+} so are the coordination numbers for respective structures, see Table 2. Moreover, the interaction energy values and the extent of the H-H bond activation (measured by the red-shifts, Δv , and H-H elongations, Δr_{HH}) are similar for these two cations (Table 2). The calculations for the [(M7)CuH₂]⁰ model show that the Cu²⁺ cation is not stable while two-coordinated, contrary to Zn²⁺. Hence, the H₂ molecule, bound to the cation, is unable to approach the framework oxygens when it could have interacted with them, as it is in case of Zn²⁺. Comparing to Cu⁺, for Cu²⁺ the π -backdonation is negligible. Since the fourfold coordination is stable, the Cu²⁺ charge is neutralised to the large extent so that the σ -donation is not able to activate H-H strongly enough.

The conclusion of the Δv vs. $\Delta r_{\rm HH}$ correlation has been positively verified by the Cu²⁺ cation (Fig. 2).

As the systems containing Cu^{2+} cation: $[CuH_2]^{2+}$, $[(T1)CuH_2]^+$, and $[(M7)CuH_2]^0$, are open-shell, the spin-resolved NOCV analysis has been performed for α and β electrons independently. Only the σ -donation and the σ -backdonation contributions were significant (Table 3), similarly as for the Mg²⁺, Cd²⁺, and Zn²⁺ sites. Also, the contours of contribution to deformation density form a similar picture (Fig. 3).

Moreover, even though the systems with the Cu²⁺ cation, specifically demanding for its electronic structure significantly different from those for which the model has been optimized (d¹⁰ cations), were not included in determining the $\Delta r_{\rm HH}^{\rm NOCV}$ vs. $\Delta r_{\rm HH}$ dependency (calculated according to Eq. 2, see Fig. 4), they match that dependency. Hence, the Cu²⁺ systems fit, in the same way, the $\Delta r_{\rm HH}$ vs. $\Delta E_{\rm orb}^i$ dependency, so the either said relationship seems quite universal one.

References

Figure 1 Naming of T positions in M7 model, after?

Table 1 Energy changes between given elementary step and the previous step ($\Delta E'$) without (DFT) or with dispersion (DFT+D), (ΔE_D), energy changes due to the DFT+D reoptimization (ΔE_{opt}).

Structure	Label, n	$\Delta E' = E_n - E_{n-1}$		$\Delta E_{\rm D} =$	$\Delta E_{\rm opt} =$		
		/(kca	$(1 \cdot mol^{-1})$				
		E _{DFT} E _{DFT+D}		$(E_{\rm DFT+D} - E_{\rm DFT})$ /(kcal·mol ⁻¹)	$ \begin{pmatrix} E_{\rm DFT+D}^{\rm geom.opt.} - E_{\rm DFT+D}^{\rm SCF} \\ /(\rm kcal \cdot mol^{-1}) \end{pmatrix} $		
$[(M9)Zn]^* + H_2$	1	_	_	-	-0.3		
$[(M9)ZnH_2]$	2	-41.4	-45.5	-4.1	-0.3		
TS _{2,4}	3	35.0	35.4	0.4	-0.1		
[(M9)ZnHH]	4	-7.8	-8.3	-0.5	-0.2		
$TS_{4,6}$	5	20.1	20.0	-0.1	-0.2		
[(M9)HZnH]	6	-53.9	-51.1	2.8	-0.4		
$[(M9)Zn]^* + H_2$	8	46.1	47.7	1.6	-0.2		

Table 2 The measure of H-H bond activation – Δr_{HH} , Δv , and ΔE_{total} , for the systems with Cu²⁺ cation.

Model label	Model	Coord number	r _{MH} ∕Å	$\Delta r_{ m HH} / m pm$	$\Delta v / cm^{-1}$	$\Delta E_{ m total} / m kcal \cdot mol^{-1}$
r	$[CuH_2]^{2+}$	0	1.85	8.8	-1072	-50.5
S	[(T1)CuH ₂] ⁺	2	1.88	2.9	-415	-13.2
t	$[(M7)CuH_2]^0$	4	2.14	1.2	-177	-3.5

Table 3 Elongation of H-H bond (Δr_{HH}), sum of orbital interaction energies (ΔE_{orb}) for α and β electrons, its contributions: σ -donation ($\Delta E_{\text{orb}}^{\text{don}}$) and respective NOCV charge transfer estimates (λ^i) for the systems with Cu²⁺ cation.

Model	Coordi-	$\Delta r_{ m HH}/$	$\Delta E_{\rm orb}/$	σ -donation ($\alpha + \beta$)		σ -donation		σ -donation	
	nate	pm	$kcal \cdot mol^{-1}$	$\Delta E_{\rm orb}^{\rm don}$	$\lambda^{ m don}$	$\Delta E_{\rm orb}^{\rm don}$	$\Delta E_{\rm orb}^{\rm don}$	λ^{bdon}	λ^{bdon}
	number			010		(α)	$(\boldsymbol{\beta})$	(α)	(β)
[CuH ₂] ²⁺	0	8.8	-45.1	-41.3	0.49	-21.0	-20.3	0.25	0.24
[(T1)CuH ₂] ⁺	2 2.9	2.0	9 –20.0	-13.5	0.27	-6.9	-6.6	0.14	0.13
		2.9		-1.1^{*}	0.05*		-1.1^{*}		0.05*
$[(M7)CuH_2]^0$	4	1.2	-11.9	-5.3	0.20	-2.7	-2.6	0.10	0.09

*– σ -backdonation

Figure 2 Correlation between H-H bond elongation (Δr_{HH}) and IR red-shift (Δv_{HH}) cationic MFI sites. Labelling refers to Table 2.

Figure 3 Contributions to deformation β electron density for $[(T1)ZnH_2]^+$ together with the corresponding orbital interaction energy contributions ($\Delta E_{orb}^i/kcal \cdot mol^{-1}$) and NOCV charge transfer estimates (λ_i). Red (light grey) – density outflow, blue (dark grey) – density inflow (contour value 0.001 a.u., colour figures on-line).

Figure 4 H-H bond elongation calculated from contributions to orbital interaction energy ($\Delta r_{\text{HH}}^{\text{NOCV}}$) *vs.* calculated wave numbers (Δr). Labelling refers to Table 2.