
Supporting Information for “I. Dissociation free

energies in drug-receptor systems via non

equilibrium alchemical simulations: theoretical

framework”

Piero Procacci∗

Department of Chemistry, University of Florence, Italy

E-mail: procacci@unifi.it

According to the Crooks theorem, the simulation volume dependent annihilation free energy

of the bound ligand is given by

∆G(b)
sim = −kBT ln

[
(1− c)e−β∆Gx + ce−β∆Gsx

]
= −kBT ln

{
(1− c)e−β∆Gx

[
1+

c
1− c

eβ (∆Gx−∆Gsx)

]}
(1)

with ∆Gx = 〈W1→0〉−
βσ2

1
2 and ∆Gsx = 〈W2→0〉−

βσ2
2

2 , the latter term being due the shadow nor-

mal component (c� 1)) of the unbound ligand in MD box of standard size. For normal work

distributions, ∆Gsx, i.e. the annihilation free energy of the free ligand in a box of volume Vbox con-

taining the protein, is strictly related to the hydration free energy of the pure ligand and, clearly,

∆Gsx→ ∆Gs as Vbox→ ∞. We make the ansatz that

∆Gsx = ∆Gs(1− e−Vbox/VRL) = ∆Gs−δ∆Gs (2)
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where VRL is defined by the above equation and is related to the sum of the volumes of the ligand

and of the protein in standard conditions and δ∆Gs is a correction due to the presence of the protein

in the box. As discussed in the paper, the quantity ∆Gx, the annihilation free energy starting from

the bound ligand states, is instead independent of the box size and must be hence related to some

bound state physical observable. We have seen in the paper that ∆Gb
0 = ∆Gx + kBT ln(Vsite/V0).

In an ideal equilibrium simulation in box of volume Vbox, the volume dependent dissociation free

energy is related to the standard dissociation free energy as

∆Gsim = ∆Gb
0−∆Gs− kBT ln

Vbox

V0

∆Gb
0−∆Gs = ∆Gsim + kBT ln

Vbox

V0

∆Gx−∆Gs = ∆Gsim + kBT ln
Vbox

Vsite
(3)

so that, conventionally, ∆Gsim = ∆Gb
0−∆Gs = ∆G0 when the box volume equals that of the stan-

dard state. Upon substitution of Eq. 3 into Eq. 1 and exploiting Eq. 2, we find that

∆G(b)
sim =−kBT ln

{
(1− c)e−β∆Gx

[
1+

c
1− c

eβ

(
∆Gsim+δ∆Gs+kBT ln Vbox

Vsite

)]}
(4)

We also have that the ratio of the weights of the two normal components in Eq. 1 is related to the

equilibrium probability ratio of the bound and unbound state in the simulation volume Vbox, that is

c
1− c

= e−β∆Gsim (5)

Using Eq. 5 in Eq. 4

∆G(b)
sim =−kBT ln

[
(1− c)e−β∆Gx

(
1+

Vbox

Vsite
eβδ∆Gs

)]
∆G(b)

sim = ∆Gx− kBT ln
[
(1− c)

(
1+

Vbox

Vsite
eβδ∆Gs

)]
(6)
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We now set in Eq. 1 c = 0.5, such that the weights of the starting states are equal. We obtain

∆G(b)
sim = kBT ln2+ ln

[
e−β∆Gx + e−β∆Gsx

]
' kBT ln2+∆Gsx (7)

where the latter equation is essentially exact for tight binding ligands. The c=1/2 ∆Gsim differs by

a term kBT ln2 with respect to the hydration free energy of the ligand ∆Gsx ' ∆Gs. This is due to

the fact that the two equal weight normal components referring to the starting bound and unbound

states in FS-DAM are normalized to 1/2 rather than to 1, so that the crossing point with the reverse

distribution P(−W ), exhibiting a single normal component with weight (essentially) 1 peaked at

∆Gs +0.5βσ2
s , get up-shifted. Consequently we do expect that also the volume V ′∗ for which c =

1/2 is multiplied by a factor of two with respect to the volume, V∗, at which ∆Gsim(c = 0.5) = ∆Gs,

i.e.

V ′∗ = 2V∗ (8)

Setting c= 1/2 in Eq. 6, and using Eq. 7 we find that the equal weight volume in FS-DAM satisfies

the relation:

∆Gx−∆Gsx = kBT ln
[(

1+
V ′∗

Vsite
eβδ∆Gs

)]
(9)

so that

V ′∗
Vsite

= eβ (∆Gx−∆Gs)− e−βδ∆Gs (10)

V∗
Vsite

' 1
2

eβ (∆Gx−∆Gs)

where in the last equation we have exploited the fact that ∆Gsx is essentially equal to ∆Gs for

large box volumes and used Eq. 8. On the other hand, the equilibrium constant of the reaction

RL ⇀↽ R+L does not depend on the concentrations of the species but the ratio of the bound and
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unbound states probability does. The concentration c∗ for which the two probability are equal is

trivially given by

[R][L]
RL

=
c∗
2

c∗
2

c∗
2

=
c∗
2

= K

c∗ = 2K (11)

Eq. 11 can be written in the equivalent form

V∗
V0

=
1
2

eβ (∆Gb
0−∆Gs)

V∗
Vsite

=
1
2

eβ (∆Gx−∆Gs) (12)

where in Eq. 12 we have used the relation ∆Gb
0 = ∆Gx + kBT ln(Vsite/V0) as a definition for the

exclusion zone Vsite. The dissociation constant can be hence computed via FS-DAM calculations

as

K =
e−β (∆Gx−∆Gs)

Vsite
(13)

that is equivalent to Eq. 23 of the main paper. It should be noted that Eq. 13 (or Eq. 23 of the

main paper) makes no reference whatsoever to the speed of the NE process and is hence a general

equation that is valid also for alchemical transformations done at infinitely low speed. In this latter

case one should assume that a (equilibrium) DAM simulation yields an inifitely narrow distribution

peaked at ∆Gx abd ∆Gs for the annihilation of the bound and unbound ligand, respectively.
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