Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

On the diatropic perimeter of iterated altan-molecules

G. Monaco

Electronic Supporting Information

Figure ESI1. Orbital energy levels for *altan*²-[10]annulene. In order to compare the HLPM energies with the ab initio ones, the β parameter has been estimated as 0.2377 au, matching the HOMO-LUMO gap of benzene (2 β) to the value computed at the HF/6-31G**//B3LYP/6-31G* level (0.47543 au).

Figure ESI2. Orbital energy levels for *altan*-kekulene. In order to compare the HLPM energies with the ab initio ones, the β parameter has been estimated as 0.2377 au, matching the HOMO-LUMO gap of benzene (2 β) to the value computed at the HF/6-31G**//B3LYP/6-31G* level (0.47543 au).

Full reference 18

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, . Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 Revision D.01, Gaussian Inc. Wallingford CT 2009.

Figure ESI4. Frontier orbitals of *altan*-kekulene at the UB3LYP/6-31G* level

Species	Method	Job	Symm	Energy (au)	NOONs
2 Singlet	UB3LYP/6-31G*	Opt.	<i>C</i> ₂	-3215.4869918	2.00 1.99 1.96 1.86 1.37 / 0.63 0.14 0.04 0.01 0.00
2 Triplet	CAS(10,10)/STO-3G //UB3LYP/6-31G*	Single Point	<i>C</i> ₂	-3156.1202856	
2 Singlet	CAS(10,10)/STO-3G //UB3LYP/6-31G*	Single Point	<i>C</i> ₂	-3156.1113149	1.92 1.92 1.58 1.55 1.50 / 0.53 0.44 0.42 0.08 0.07
2 Singlet	B3LYP/6-31G*	Opt.	<i>C</i> ₆	-3215.4820715	
2 Triplet	CAS(10,10)/STO-3G //B3LYP/6-31G*	Single Point	<i>C</i> ₆	-3156.0926224	
2 Singlet	CAS(10,10)/STO-3G //B3LYP/6-31G*	Single Point	<i>C</i> ₆	-3156.123765	1.94 1.90 1.86 1.80 1.79 / 0.25 0.19 0.14 0.08 0.07
2 Singlet	CAS(10,10)/6-31G* //B3LYP/6-31G*	Single Point	<i>C</i> ₆	-3194.9702666	1.95 1.93 1.90 1.87 1.87 / 0.16 0.12 0.09 0.06 0.05
3 Singlet	B3LYP/6-31G*	Opt.	C_{10v}	-1910.827023	
3 Singlet	UB3LYP/6-31G*	Opt.	<i>C</i> _{10v}	-1910.8411170	1.98 1.98 1.861.86 1.29 / 0.71 0.14 0.14 0.02 0.02
3 Triplet	CAS(10,10)/STO-3G //B3LYP/6-31G*	Single Point	<i>C</i> _{10v}	-1875.4321369	
3 Singlet	CAS(10,10)/STO-3G //B3LYP/6-31G*	Single Point	\mathcal{C}_{10v}	-1875.4466025	1.91 1.91 1.80 1.80 1.02 / 0.98 0.20 0.20 0.09 0.09
3 Singlet	CAS(10,10)/6-31G* //B3LYP/6-31G*	Single Point	<i>C</i> _{10v}	-1898.627727	1.92 1.92 1.84 1.84 1.36 / 0.64 0.16 0.16 0.08 0.08

Table ESI1. Absolute values of the energies discussed in the paper and NaturalOrbital Occupation Numbers (NOONs).

Figure ESI5. Comparison of σ_{zz} scans computed for **2** and **3** at the HF/6-311G**, B972/6-31G** and UB972/6-311G** level. Lines are obtained from a fit with 3 ICLOCs with parameters given in Tables ESI2 and ESI3.

Table ESI2. Best-fit parameters of the 3 ICLOCs used in fitting the σ_{zz} scans for **2** displayed in Fig. ESI5. The scans have been computed, at the HF, B972 and UB972 level, using always the 6-311G** basis set. Each ICLOC model is defined in terms of current strength *I*, ring radius *s*, and ring height *z* (see ref. 45). Calculated (non-relative) current strengths are averages of the appropriate bong current strengths from Fig. 5 of ref. 6. The heights *z* of the loops above the centre of mass along the symmetry axis, and the radii *s* of the loops have been determined geometrically and have not been fitted. Fitted value are expected to be significantly larger than calculated ring current strengths because the fir is affected by the 6 H atoms pointing inwards, which give a strong paramagnetic contribution to the chemical shielding.

Loop						
	HF	Calc.	B972	UB972	s (Å)	z (Å)
	scan		scan	scan		
inner	22.6	10.7	18.8	17.4	3.56	1.41
middle	-16.2	-8.7	-17.5	-18.7	5.53	0.40
outer	-4.0	-1.4	10.7	-3.0	7.17	-0.93
Total	2.4	0.6	12.0	-4.3		1

Table ESI3. Best-fit parameters of the 3 ICLOCs used in fitting the σ_{zz} scans for **3** displayed in Fig. ESI5. The scans have been computed, at the HF, B972 or UB972 level, using always the 6-311G** basis set. Each ICLOC model is defined in terms of current strength *I*, ring radius *s*, and ring height *z* (see ref. 45). Calculated (non-relative) current strengths are from this paper (Table 1). The heights *z* of the loops above the centre of mass along the symmetry axis, and the radii *s* of the loops have been determined geometrically and have not been fitted.

Loop		<i>I</i> (nA T ⁻¹)					
	HF	Calc.	B972	Calc.	UB972	s (Å)	z (Å)
	scan		Scan		Scan		
inner	-6.3	-17.7	-3.9	-17.8	-5.2	2.34	-1.94
middle	-25.2	-9.4	-40.6	-23.0	-22.6	3.71	-0.68
outer	-11.5	-13.1	-18.5	-25.1	-7.5	4.07	1.42
Total	-43.0	-40.2	-63.0	-65.9		1	1

6	1.234525	3.616164	1.293861
6	2.514426	2.877232	1.293968
6	-2.514428	2.877212	1.293861
6	3.748969	-0.738941	1.293968
6	-3.748952	-0.738953	1.293861
6	1.234543	-3.616173	1.293968
6	-1.234543	3.616173	1.293968
6	3.748952	0.738953	1.293861
6	-3.748969	0.738941	1.293968
6	2.514428	-2.877212	1.293861
6	-2.514426	-2.877232	1.293968
6	-1.234525	-3.616164	1.293861
6	1.199570	4.914394	0.671057
6	3.656233	3.496078	0.671166
6	-3.656205	3.496055	0.671057
6	4.855809	-1.418352	0.671166
6	1.199575	-4.914430	0.671166
6	-1.199575	4.914430	0.671166
6	4.855775	1.418339	0.671057
6	-4.855809	1.418352	0.671166
6	3.656205	-3.496055	0.671057
6	-1.199570	-4.914394	0.671057
6	0.000000	3.031283	1.628226
6	2.625168	1.515642	1.628226
6	-2.625168	1.515642	1.628226
6	2.625168	-1.515642	1.628226
6	-2.625168	-1.515642	1.628226
6	0.000000	-3.031283	1.628226
6	0.000000	5.559218	0.339107
6	4.814424	2.779610	0.339107
6	-4.814425	2.779609	0.339107
6	4.814425	-2.779609	0.339107
6	0.000000	-5.559218	0.339107
6	2.369320	5.467922	0.147194
6	3.550749	4.785866	0.147239
6	-3.550700	4.785852	0.147194
6	5.920056	-0.682106	0.147239
6	2.369307	-5.467972	0.147239
6	-2.369307	5.467972	0.147239
6	5.920020	0.682070	0.147194
6	-5.920056	0.682106	0.147239
6	3.550700	-4.785852	0.147194
6	-2.369320	-5.467922	0.147194

B3LYP/6-31G* optimized geometry of C₆ altan-kekulene (2 of 3 pages)

-01			
1	0.000079	2.035514	2.055951
1	1.762846	1.017688	2.055951
1	-1.762767	1.017825	2.055951
1	1.762767	-1.017825	2.055951
1	-1.762846	-1.017688	2.055951
1	-0.000079	-2.035514	2.055951
6	-3.550749	-4.785866	0.147239
6	-5.920020	-0.682070	0.147194
6	-4.855775	-1.418339	0.671057
6	-4.814424	-2.779610	0.339107
6	-3.656233	-3.496078	0.671166
6	5.822766	3.361792	-0.563494
6	5.629779	4.679986	-1.084804
1	6.356336	5.056231	-1.803044
6	4.468791	5.414166	-0.776195
6	3.790828	6.565937	-1.308069
1	4.190512	7.258242	-2.039240
6	2.454412	6.577143	-0.776210
6	6.867839	2.535506	-1.084815
1	7.556996	2.976555	-1.803059
6	6.923178	1.162988	-0.776210
6	7.581682	0.000015	-1.308069
1	8.381078	0.000031	-2.039240
6	6.923201	-1.163003	-0.776195
6	-5.822766	-3.361792	-0.563494
6	-5.629779	-4.679986	-1.084804
1	-6.356336	-5.056231	-1.803044
6	-4.468791	-5.414166	-0.776195
6	-3.790828	-6.565937	-1.308069
1	-4.190512	-7.258242	-2.039240
6	-2.454412	-6.577143	-0.776210
6	-6.867839	-2.535506	-1.084815
1	-7.556996	-2.976555	-1.803059
6	-6.923178	-1.162988	-0.776210
6	-7.581682	-0.000015	-1.308069
1	-8.381078	-0.000031	-2.039240
6	-6.923201	1.163003	-0.776195
6	-6.867876	2.535539	-1.084804
1	-7.556992	2.976633	-1.803044
6	-5.822780	3.361767	-0.563494
6	6.867876	-2.535539	-1.084804
1	7.556992	-2.976633	-1.803044
6	5.822780	-3.361767	-0.563494
6	1.238107	7.215476	-1.084815
1	1.200726	8.032828	-1.803059

B3LYP/6-31G* optimized geometry of C_6 altan-kekulene (3 of 3 pages)

	•		-
6	-0.000015	6.723559	-0.563494
6	-1.238107	-7.215476	-1.084815
1	-1.200726	-8.032828	-1.803059
6	0.000015	-6.723559	-0.563494
6	5.629732	-4.679971	-1.084815
1	6.356270	-5.056273	-1.803059
6	4.468767	-5.414154	-0.776210
6	3.790854	-6.565921	-1.308069
1	4.190566	-7.258211	-2.039240
6	2.454410	-6.577170	-0.776195
6	1.238097	-7.215525	-1.084804
1	1.200656	-8.032864	-1.803044
6	-1.238097	7.215525	-1.084804
1	-1.200656	8.032864	-1.803044
6	-2.454410	6.577170	-0.776195
6	-3.790854	6.565921	-1.308069
1	-4.190566	7.258211	-2.039240
6	-4.468767	5.414154	-0.776210
6	-5.629732	4.679971	-1.084815
1	-6.356270	5.056273	-1.803059

6	2.510668	-2.881226	1.278430
6	1.233573	-3.617669	1.280664
6	3.738406	0.738757	1.272307
6	-2.510613	-2.881245	1.278491
6	1.233493	3.617673	1.280686
6	-3.738406	0.738705	1.272272
6	3.738406	-0.738705	1.272272
6	-1.233493	-3.617673	1.280686
6	2.510613	2.881245	1.278491
6	-3.738406	-0.738757	1.272307
6	-1.233573	3.617669	1.280664
6	-2.510668	2.881226	1.278430
6	3.653315	-3.503430	0.661655
6	1.199102	-4.922888	0.663419
6	4.846789	1.419587	0.650140
6	-3.653264	-3.503476	0.661760
6	-4.846791	1.419514	0.650062
6	4.846791	-1.419514	0.650062
6	-1.199010	-4.922890	0.663442
6	3.653264	3.503476	0.661760
6	-4.846789	-1.419587	0.650140
6	-3.653315	3.503430	0.661655
6	2.618420	-1.515771	1.606950
6	0.000040	-3.032202	1.615601
6	2.618411	1.515803	1.607030
6	-2.618411	-1.515803	1.607030
6	-0.000040	3.032202	1.615601
6	-2.618420	1.515771	1.606950
6	4.811595	-2.786440	0.323432
6	0.000045	-5.571531	0.336041
6	4.811590	2.786535	0.323574
6	-4.811590	-2.786535	0.323574
6	-4.811595	2.786440	0.323432
6	3.551973	-4.795562	0.147571
6	2.367697	-5.479276	0.147894
6	5.906623	0.687007	0.125823
6	-3.551914	-4.795610	0.147693
6	-5.906614	0.686901	0.125768
6	5.906614	-0.686901	0.125768
6	-2.367612	-5.479298	0.147965
6	3.551914	4.795610	0.147693
6	-5.906623	-0.687007	0.125823
6	-3.551973	4.795562	0.147571
1	1.754174	-1.018732	2.031699
1	0.000045	-2.035867	2.041486

UB3LYP/6-31G* optimized geometry of C_2 altan-kekulene (2 of 3 pages)

~~		optimiletag	,comeny or
1	1.754224	1.018746	2.031885
1	-1.754224	-1.018746	2.031885
1	-0.000045	2.035867	2.041486
1	-1.754174	1.018732	2.031699
6	-2.367697	5.479276	0.147894
6	2.367612	5.479298	0.147965
6	1.199010	4.922890	0.663442
6	-0.000045	5.571531	0.336041
6	-1.199102	4.922888	0.663419
6	0.000038	-6.748918	-0.549567
6	1.241037	-7.247432	-1.057860
1	1.206945	-8.076332	-1.762697
6	2.456761	-6.601684	-0.758122
6	3.796267	-6.595440	-1.279290
1	4.200673	-7.294801	-2.001134
6	4.474780	-5.430988	-0.760581
6	-1.240993	-7.247490	-1.057764
1	-1.206915	-8.076402	-1.762586
6	-2.456697	-6.601757	-0.757973
6	-3.796258	-6.595574	-1.279042
1	-4.200703	-7.294983	-2.000817
6	-4.474779	-5.431105	-0.760327
6	-0.000038	6.748918	-0.549567
6	-1.241037	7.247432	-1.057860
1	-1.206945	8.076332	-1.762697
6	-2.456761	6.601684	-0.758122
6	-3.796267	6.595440	-1.279290
1	-4.200673	7.294801	-2.001134
6	-4.474780	5.430988	-0.760581
6	1.240993	7.247490	-1.057764
1	1.206915	8.076402	-1.762586
6	2.456697	6.601757	-0.757973
6	3.796258	6.595574	-1.279042
1	4.200703	7.294983	-2.000817
6	4.474779	5.431105	-0.760327
6	5.636006	4.700683	-1.068815
1	6.367827	5.083336	-1.777936
6	5.823731	3.373157	-0.562778
6	-5.636006	-4.700683	-1.068815
1	-6.367827	-5.083336	-1.777936
6	-5.823731	-3.373157	-0.562778
6	5.635960	-4.700501	-1.069116
1	6.367745	-5.083096	-1.778307
6	5.823702	-3.373011	-0.563017
6	-5.635960	4.700501	-1.069116

UB3LYP/6-31G* optimized geometry of C_2 altan-kekulene (3 of 3 pages)

1	-6.367745	5.083096	-1.778307
6	-5.823702	3.373011	-0.563017
6	-6.875640	-2.544059	-1.074929
1	-7.576605	-2.985946	-1.780545
6	-6.919751	-1.172928	-0.771830
6	-7.588797	-0.000088	-1.291760
1	-8.397545	-0.000115	-2.012982
6	-6.919722	1.172770	-0.771948
6	-6.875583	2.543881	-1.075155
1	-7.576516	2.985719	-1.780831
6	6.875583	-2.543881	-1.075155
1	7.576516	-2.985719	-1.780831
6	6.919722	-1.172770	-0.771948
6	7.588797	0.000088	-1.291760
1	8.397545	0.000115	-2.012982
6	6.919751	1.172928	-0.771830
6	6.875640	2.544059	-1.074929
1	7.576605	2.985946	-1.780545

B3L	YP/6-31G*	optimized geo	ometry of C ₁₀	<i>, altan</i> ₂ -[10]a	nnulene (1 of	f 2
page	es)					
~	0 = 0 0 (0 (0.004046	4			

6	0.722636	2.224046	-1.939032
6	-0.722636	2.224046	-1.939032
6	-1.891886	1.374536	-1.939032
6	-2.338500	0.000000	-1.939032
6	-1.891886	-1.374536	-1.939032
6	-0.722636	-2.224046	-1.939032
6	0.722636	-2.224046	-1.939032
6	1.891886	-1.374536	-1.939032
6	2.338500	0.000000	-1.939032
6	1.891886	1.374536	-1.939032
6	1.091757	3.360083	-1.016032
6	-1.091757	3.360083	-1.016032
6	-2.858257	2.076645	-1.016032
6	-3.533000	0.000000	-1.016032
6	-2.858257	-2.076645	-1.016032
6	-1.091757	-3.360083	-1.016032
6	1.091757	-3.360083	-1.016032
6	2.858257	-2.076645	-1.016032
6	3.533000	0.000000	-1.016032
6	2.858257	2.076645	-1.016032
6	0.000000	3.885500	-0.356032
6	-2.283840	3.143436	-0.356032
6	-3.695330	1.200686	-0.356032
6	-3.695330	-1.200686	-0.356032
6	-2.283840	-3.143436	-0.356032
6	0.000000	-3.885500	-0.356032
6	2.283840	-3.143436	-0.356032
6	3.695330	-1.200686	-0.356032
6	3.695330	1.200686	-0.356032
6	2.283840	3.143436	-0.356032
6	0.000000	4.063500	1.086968
6	-2.388465	3.287441	1.086968
6	-3.864618	1.255691	1.086968
6	-3.864618	-1.255691	1.086968
6	-2.388465	-3.287441	1.086968
6	0.000000	-4.063500	1.086968
6	2.388465	-3.287441	1.086968
6	3.864618	-1.255691	1.086968
6	3.864618	1.255691	1.086968
6	2.388465	3.287441	1.086968
6	1.254300	3.860338	1.750968
6	-1.254300	3.860338	1.750968
6	-3.283800	2.385820	1.750968
6	-4.059000	0.000000	1.750968

B3L	XP/6-31G* o	ptimized geo	ometry of C _{10v} altan ₂ -[10]annulene (2 of 2
pag	es)		
6	2 202000	2 205020	1 750060

6	-3.283800	-2.385820	1.750968
6	-1.254300	-3.860338	1.750968
6	1.254300	-3.860338	1.750968
6	3.283800	-2.385820	1.750968
6	4.059000	0.000000	1.750968
6	3.283800	2.385820	1.750968
1	1.252909	3.856059	2.838968
1	-1.252909	3.856059	2.838968
1	-3.280160	2.383175	2.838968
1	-4.054500	0.000000	2.838968
1	-3.280160	-2.383175	2.838968
1	-1.252909	-3.856059	2.838968
1	1.252909	-3.856059	2.838968
1	3.280160	-2.383175	2.838968
1	4.054500	0.000000	2.838968
1	3.280160	2.383175	2.838968