Supplementary Information

A mechanistic model for hydrogen activation, spillover, and its chemical reaction in a zeolite-encapsulated Pt catalyst

Hyeyoung Shin^a, Minkee Choi^b and Hyungjun Kim^{*a}

^aGraduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Korea

^bDepartment of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Korea

* Corresponding author. Email: <u>linus16@kaist.ac.kr</u>

Fig. S1. Atomistic structures used for (a) the ring-shaped zeolite model and (b) the linear chain zeolite model. Each zeolite model is indicated as ball-stick-shape. All models are built based on the experimentally reported NaA structure (ICSD 9326), which is illustrated as a stick shape in both figures. These models have alternative arrangements of four-coordinate Al and Si atoms, which are bridged via either an O atom or an OH group (Brønsted acid site; BAS). The positions of oxygen atoms pointing in outward directions are fixed during the DFT optimization steps. Orange, purple, and red colors represent Si, Al, and O atoms, respectively.

Fig. S2. Energy diagram for sequential hydrogenation steps of the Pt_6 nanoparticle interacting with the zeolite surface (Fig. 1b).

Fig. S3. DFT optimized structures before and after the proton rearrangement step between surface hydroxyl groups (OH) at the Pt-zeolite interface (R2 in Fig. S4b), yielding a H⁺-deficient defect site of $[AlO_4]^-$ and a H⁺-rich defect site of $[AlO_4H_2]^+$. Pt₆H₁₂ nanoparticle developed a specific interaction with the $[AlO_4]^-$ site, where Pt-O distance is only 2.5 Å.

Fig. S4. DFT optimized structures and reaction energies during the H₂ activation and H spillover steps at the Pt-zeolite interface. (a) R1: hydrogenation step of Pt_6H_{11} , yielding Pt_6H_{12} ($\Delta E = -0.63 \text{ eV}$). (b) R2: proton rearrangement step between surface hydroxyl groups (OH), yielding a H⁺-deficient defect site of [AlO₄]⁻ and a H⁺-rich defect site of [AlO₄H₂]⁺. This step is favorable by -0.27 eV and requires activation energy of 0.52 eV. (c) R3: H spillover step. One H atom of the Pt_6H_{12} cluster transfers to the adjacent zeolite surface, yielding a surface OH. The Mulliken spin population of the spilt-over H is 0.00 (no radical character). This step requires reaction energy of 1.40 eV.

Fig. S5. DFT optimized structures and reaction energies during the H diffusion steps at the internal domain of a defect-free zeolite. (a) R1: proton rearrangement step between surface OH groups, yielding a H⁺-deficient defect site of $[AIO_4]^-$ and a H⁺-rich defect site of $[AIO_4H_2]^+$. This step requires reaction energy of 0.49 eV with activation energy of 0.98 eV. (b) R2: sequential proton rearrangement step. This step requires reaction energy of 0.06 eV with activation energy of 0.79 eV. (c) R3: spilt-over H migration step from the Pt-zeolite interface into the defect-free zeolite domain. This requires reaction energy of 2.34 eV. (d) R4: H radical migration step via bond exchange between the three-centered O-H-O bond and the adjacent O-H bond of the surface OH group. This step requires reaction energy of -0.07 eV with activation energy of 0.69 eV.

Fig. S6. DFT optimized structures and reaction energies during the H diffusion steps at the internal domain of a zeolite containing a Lewis acidic defect site (LAS). (a) R1: proton rearrangement step between surface OH groups, yielding a H⁺-deficient defect site of $[AlO_4]^-$ and a H⁺-rich defect site of $[AlO_3H]^+$. This step requires reaction energy of 1.05 eV with activation energy of 1.26 eV. (b) R2: sequential proton rearrangement step. This step requires reaction energy of 0.47 eV with activation energy of 1.09 eV. (c) R3: spilt-over H migration step from the Pt-zeolite interface. Here, e⁻ is localized in the LAS that is a good e⁻ accepting site, whereas H⁺ is transferred to the H⁺-deficient site, $[AlO_4]^-$, by forming a new surface OH. This requires reaction energy of 1.69 eV. (d) R4: proton migration step via surface proton hopping among surface OH groups. This step is an energetically favorable reaction with reaction energy of -0.35 eV and requires activation energy of 0.60 eV.

a) R1

Fig. S7. DFT optimized structures and reaction energies during the H diffusion steps at the external domain of a zeolite with a Lewis acidic defect site (LAS). (a) R1: benzene adsorption step with binding energy of -0.81 eV. Benzene binds to the external tri-coordinated Al site. (b) R2: proton rearrangement step between surface OH groups, yielding a H⁺-deficient defect site of [AlO₄]⁻ and a

H⁺-rich defect site of $[AlO_3H]^+$. This step requires reaction energy of 0.47 eV with activation energy of 1.18 eV. (c) R3: sequential proton rearrangement step. This step requires reaction energy of 0.39 eV with activation energy of 1.06 eV. (d) R4: spilt-over H migration step from the internal zeolite domain. This step has reaction energy of -1.24 eV or -0.32 eV for the case of migration from the defect-free zeolite domain or the case of migration from the zeolite domain with a LAS, respectively. (e) R5: benzene hydrogenation step with reaction energy of -0.52 eV, forming C₆H₇. (f) R6: another proton migration step to recover the initial state via surface proton hopping among surface OH groups. This step is an energetically favorable with reaction energy of -0.75 eV and requires activation energy of 0.51 eV.

Fig. S8. Overall reaction energy diagrams for the sequential hydrogenations of unsaturated organic molecules, yielding (a) C_6H_8 , (b) C_6H_9 , (c) C_6H_{10} , (d) C_6H_{11} , and (e) C_6H_{12} (cyclohexane). Intermediate states and transition states are marked as squares and stars, respectively. Filled and empty squares in step III denote the energetics when the spilt-over H migrates over the defect-free regime and the LAS comprising regime in the zeolite surface, respectively.

$\Delta E_{act.}$ (eV)	D (Å ² /s)	τ (s/nm ²)
0.5	3.69×10^{9}	2.71×10^{-8}
0.7	4.37×10^7	2.29×10^{-6}
1.3	7.22×10^{1}	$1.39 \times 10^{\circ}$
2.0	1.30×10^{-5}	7.71×10^{6}

Table S1. Estimated diffusion constant (*D*) and migration time (τ) for atomic hydrogen over the zeolite surface using the transition state theory as a function of the activation energy ($\Delta E_{act.}$).