| model            | strain (%) |      | $O_2$ binding energy (eV) |         |         |
|------------------|------------|------|---------------------------|---------|---------|
|                  | Au         | MgO  | $\operatorname{top}$      | middle  | bottom  |
| Au rod           |            |      |                           |         |         |
| along $MgO[110]$ | +1.6       | 0.0  | -0.45                     | -0.17   | -0.89   |
|                  |            |      | (-0.42)                   | (-0.06) | (-0.55) |
|                  | +0.8       | -0.8 | -0.04                     | -0.05   | -0.61   |
|                  |            |      | (0.04)                    | (-0.05) | (-0.13) |
|                  | 0.0        | -1.6 | -0.03                     | -0.01   | -0.44   |
|                  |            |      | (-0.13)                   | (-0.14) | (-0.04) |
| Au rod           |            |      |                           |         |         |
| along $MgO[100]$ | -4.1       | 0.0  | -0.03                     | -0.05   | -0.19   |
|                  |            |      | (0.01)                    | (-0.04) | (-0.01) |
|                  | -2.1       | +2.1 | -0.07                     | -0.04   | 0.03    |
|                  |            |      | (0.06)                    | (-0.03) | (-0.02) |
|                  | 0.0        | +4.1 | 0.04                      | -0.01   | -0.21   |
|                  |            |      | (-0.01)                   | (-0.03) | (0.01)  |

Table 1:  ${\rm O}_2$  adsorption energies at a supported Au rod on MgO as compared to unsupported Au (in parenthesis).

Table 2: Adsorption energies, bond lengths, and charge of  $O_2$  adsorbed at the interface boundary with various strain conditions; again reference values on unsupported Au are in parenthesis

| model          | strain (%) |          | $E_{\mathcal{O}_2}^{\mathrm{ads}}$ (eV) | $d_{\rm O-O}$ (Å) | charge  |
|----------------|------------|----------|-----------------------------------------|-------------------|---------|
|                | Au rod     | MgO slab |                                         |                   | (e)     |
| Au rod         |            |          |                                         |                   |         |
| along MgO[110] | +1.6       | 0.0      | -0.89                                   | 1.400             | -0.87   |
|                |            |          | (-0.55)                                 | (1.339)           | (-0.56) |
|                | +0.8       | -0.8     | -0.61                                   | 1.423             | -0.94   |
|                |            |          | (-0.13)                                 | (1.272)           | (-0.27) |
|                | 0.0        | -1.6     | -0.44                                   | 1.403             | -0.85   |
|                |            |          | (-0.04)                                 | (1.321)           | (-0.46) |
| Au rod         |            |          |                                         |                   |         |
| along MgO[100] | -4.1       | 0.0      | -0.19                                   | 1.359             | -0.73   |
|                |            |          | (-0.01)                                 | (1.272)           | (-0.24) |
|                | -2.1       | +2.1     | 0.03                                    | 1.334             | -0.66   |
|                |            |          | (-0.02)                                 | (1.253)           | (-0.13) |
|                | 0.0        | +4.1     | -0.21                                   | 1.337             | -0.58   |
|                |            |          | (0.01)                                  | (1.264)           | (-0.18) |



Figure 1: Minimum energy path for  $\mathcal{O}_2$  dissociation.



Figure 2: Minimum energy path for  $\rm O_2$  dissociation when an F-center is present at the Au/MgO interface.