Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supporting Information for

Tetraalkylammonium Interactions with Dodecyl Sulfate Micelles: a Molecular Dynamics Study

Guo-Kui Liu, Heng Zhang, Gang Liu, Shi-Ling Yuan,* and Cheng-Bu Liu

Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China

Table S1. Bond-Stretching Parameters.				
	Force constant $K_{\rm b}$	Ideal bond length		
	$(10^{6}$ kJmol ⁻¹ nm ⁻⁴)	$b_0(nm)$		
-C-C- (DS-)	7.15	0.153		
-С-Н	12.1	0.110		
-C-O-	6.10	0.144		
-S-O	8.37	0.150		
-S-O-	3.38	0.164		
-C-H (TMA+)	12.3	0.109		
-C-N- (TMA ⁺)	5.73	0.148		
-C-N-	2.46	0.153		
-C-C-	5.43	0.152		

Table S2.	Bond-Angle	Bending I	Parameters.
-----------	------------	-----------	-------------

	Force constant K_{θ}	Ideal bond angle θ_0
	(kJmol ⁻¹)	(degree)
С-С-Н	842	109.0
C-C-C	530	111.0
Н-С-Н	987	107.0
C-O-S	50	115.0
O-C-C	320	109.5
O-S-O	503	106.8
N-C-H	1110	112.0
C-N-C	1440	107.0
N-C-C	610	115.0

Table S3. Dihedral-angle parameters.

	Force constant K_{ζ}	Ideal dihedral angle ζ_0
	(kJmol ⁻¹ degree ⁻²)	(degree)
С-С-С-Н	3.77	0.0
C-C-O-S	1.26	0.0
C-O-S-O	1.05	0.0
C-C-C-C	3.77	0.0
C-C-C-N	1.00	180.0
C-C-N-C	1.05	0.0

Tuble 5 il Dinaing energy of the studied bystem.				
	Binding energy (kJ/mol)			
	TMADS	TEADS	TPADS	TBADS
Binding pattern I	-437.70	-407.61	-405.47	-395.48
Binding pattern II	-510.33	-487.42	-472.92	-473.19
Binding pattern III	-367.53	-362.17	-355.43	-358.43
Binding pattern IV	-423.88	-405.25	-389.89	-368.97

Table S4. Binding energy of the studied system.

Semiempirical method PM6 with the corrections called D3H4X was used for geometry optimization and binding energy calculation. PM6-D3H4X approach, which can give an accurate description of dispersion, hydrogen bonding and also halogen bonding has been tested.¹ All calculations were performed using the MOPAC 2012 program.²

Fig. S1. Partial charges of different groups in this study

It should be noted that the partial charge of N atom of T tetramethyl-, tetraethyl-, and tetrabutylammonium (TMA+, tetrapropyl-TEA⁺. TPA⁺, and TBA⁺, respectively) ions is positive. In preceding paper, the charge of N atom of CTAB is zero³ or -0.56.⁴ The partial charges of N are all positive in our studied groups. The partial charges of this paper are all obtained with Automated Force Field Topology Builder (ATB) with a systemic way as described in the paper.⁵⁻⁶ Initial charges were estimated using the ESP method (at B3LYP/6-31G* level) of Merz-Kollman.⁷ And then then further optimized by ATB. In order to check the rationality of the partial charge, we calculated the partial charges with ESP method of Merz-Singh-Kollman scheme,⁷⁻⁸ CHelp scheme,⁹ and CHelpG scheme¹⁰ at B3LYP/6-31G* level¹¹⁻¹² with Gaussian 09 program.¹³ The results show positive partial charge of N atom of tetraalkylammonium, except that TEA⁺ and TPA⁺ with Merz-Singh-Kollman scheme and TEA⁺ with CHelpG scheme are slightly negative. However, the partial charge of N atom will be negative with Mulliken population analysis. Mulliken population analysis has its well-known shortcomings. For modelling purposes, especially force field charges, ESP charges are the logical choice.¹⁴ Therefore, we believe that the positive partial charge of N atom is reasonable.

Fig. S2. Radius of gyration of the studied system with time evolution

Fig. S3. Micelle ionization degree of TAADS with time evolution

Fig. S4. The length distributions of the individual methyl groups of different systems with respect to the headgroup position.

Notes and references

1 J. Hostaš, J. Řezáč and P. Hobza, Chem. Phys. Lett., 2013, 568–569, 161-166.

2 J. D. C. Maia, G. A. Urquiza Carvalho, C. P. Mangueira, S. R. Santana, L. A. F. Cabral and G. B. Rocha, *Journal of Chemical Theory and Computation*,2012, **8**, 3072-3081.

3 Z. Wang and R. G. Larson, J. Phys. Chem. B,2009, 113, 13697-13710.

4 J. Boecker, M. Schlenkrich, P. Bopp and J. Brickmann, *The Journal of Physical Chemistry*,1992, **96**, 9915-9922.

5 A. K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P. C. Nair, C. Oostenbrink and A. E. Mark, *Journal of Chemical Theory and Computation*, 2011, 7, 4026-4037.

- 6 K. B. Koziara, M. Stroet, A. K. Malde and A. E. Mark, J Comput Aided Mol Des, 2014.
- 7 U. C. Singh and P. A. Kollman, J. Comput. Chem., 1984, 5, 129-145.
- 8 B. H. Besler, K. M. Merz and P. A. Kollman, J. Comput. Chem., 1990, 11, 431-439.
- 9 L. E. Chirlian and M. M. Francl, J. Comput. Chem., 1987, 8, 894-905.
- 10 C. M. Breneman and K. B. Wiberg, J. Comput. Chem., 1990, 11, 361-373.
- 11 A. D. Becke, The Journal of chemical physics, 1993, 98, 5648.
- 12 C. Lee, W. Yang and R. G. Parr, *Physical Review B*,1988, **37**, 785-789.

G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, J. R. C. M. A. Robb, G. Scalmani, V. Barone, B. Mennucci, H. N. G. A. Petersson, M. Caricato, X. Li, H. P. Hratchian, J. B. A. F. Izmaylov, G. Zheng, J. L. Sonnenberg, M. Hada, K. T. M. Ehara, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, O. K. Y. Honda, H. Nakai, T. Vreven, J. A. Montgomery, Jr., F. O. J. E. Peralta, M. Bearpark, J. J. Heyd, E. Brothers, V. N. S. K. N. Kudin, T. Keith, R. Kobayashi, J. Normand, A. R. K. Raghavachari, J. C. Burant, S. S. Iyengar, J. Tomasi, N. R. M. Cossi, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, C. A. V. Bakken, J. Jaramillo, R. Gomperts, R. E. Stratmann, A. J. A. O. Yazyev, R. Cammi, C. Pomelli, J. W. Ochterski, K. M. R. L. Martin, V. G. Zakrzewski, G. A. Voth, J. J. D. P.

Salvador, S. Dapprich, A. D. Daniels, J. B. F. O. Farkas, J. V. Ortiz, J. Cioslowski, and and D. J. Fox In *Gaussian 09, Revision B.01*, 2010.

14 F. Jensen, Introduction to Computational Chemistry. Wiley: 2006.