Supporting information

Zigzag edge related ferromagnetism in MoSe₂ nano-flakes

Baorui Xia, Daqiang Gao*, Peitao Liu, Yonggang Liu, Shoupeng Shi, Kun Tao.

Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, P. R. China. *E-mail: gaodq@lzu.edu.cn

Figure S1: Wide XPS spectrum for sample S860.

- Figure S2: Raman spectrums for sample S900, S940 and the substrate.
- Figure S3: AMF image for sample S900.
- Figure S4: AMF image for sample S940.

Figure S5: PL results for sample S940 at different selected spots.

- Figure S6: TG result for sample S860.
- Figure S7: The M-H curves for the substrates.

Figure S8: The isosurface plot of the spin density of MoSe₂ nanoribbon with one MoSe₂-triple vacancies.

Figure S9. The total DOS and the corresponding PDOS of the edge Mo, Se atoms and the Mo

near the MoSe₂-triple vacancies for MoSe₂ nanoribbon.

Figure S10. The low magnification time image of sample S940.

Figure S1: Wide XPS spectrum for sample S860.

Figure S2: Raman spectrums for sample S900, S940 and the substrate.

Figure S3: AMF image for sample S900.

Figure S4: AMF image for sample S940.

Figure S5: PL results for sample S940 at different selected spots.

Figure S6: TG result for sample S860.

The size of the sample S860 for the VSM measurement is about 0.5 cm \times 0.5 cm, while the size of the sample S860 for the TG measurement is 0.25 cm \times 0.25 cm. So the total mass of the sample is 0.248 mg for the VSM measurement.

Figure S7: The M-H curves for the substrates.

Recently, it has been revealed that among five different types of vacancy defects such as Mo and S single vacancies, S_2 and MoS double vacancies, and the MoS₂-triple vacancies, only the last one has significant magnetic moments in the supercell [1]. For the case of MoSe₂, we also theory studied the MoSe₂-triple vacancies related magnetic properties and the results are shown as below.

[1] Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, J. B. Lu and B. B. Huang, Phys. Chem. Chem. Phys., 2011,

Figure S8: The isosurface plot of the spin density of MoSe₂ nanoribbon with one MoSe₂-triple vacancies.

Figure S9. The total DOS and the corresponding PDOS of the edge Mo, Se atoms and the Mo near the MoSe₂-triple vacancies for MoSe₂ nanoribbon.

Figure S10. The low magnification time image of sample S940.