Understanding the Mechanism of CO₂ Capture by 1,3 Di-substituted Imidazolium Acetate Based Ionic Liquids Supporting Information

James X. Mao,[†] Janice A. Steckel,[‡] Fangyong Yan,[¶] Nilesh Dhumal,[¶] Hyung Kim,[¶] and Krishnan Damodaran^{*,†}

†Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
‡National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, Pennsylvania 15236
¶Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

E-mail: damodak@pitt.edu

Phone: 412-624-8403. Fax: 412-624-8611

List of Figures

S1	Energy profile for a possible direct reaction between $\rm EMIM^+Ac^-~IL$ and $\rm CO_2$	3
S2	Reaction profile of carbone formation and carboxylate for EMIM $^+\mathrm{Ac}^-$	5
S3	Radial distribution function and integrated coordination number with respect	
	to the center of mass (c.o.m.) of EMIM ⁺ cation and the center of mass (c.o.m.)	
	of Ac^- anion	6
S4	Energy profile for direct reaction between $\rm EMIM^+Ac^-$ IL and $\rm CO_2$ in solvated	
	$model \ldots \ldots$	6
S5	Energy profile for the first step of our proposed mechanism between $\rm EMIM^+Ac^-$	
	IL and CO_2 in solvated model	7
S6	Energy profile for the second step of our proposed mechanism between $\rm EMIM^+Ac^-$	
	IL and CO_2 in solvated model	7

List of Tables

at different calculation levels	3
ifferent fragments in imidazolium acetate stabilization	
between cation and anion of imidazolium acetate ILs,	
ained from stabilization step at B3LYP/6-31+G(d,p)	
	4
ifferent fragments in imidazolium acetate stabilization	
between cation and anion of imidazolium acetate ILs,	
ned from stabilization step at B3LYP-D3/6-31+G(d,p) $$	
	4
ergy changes a for Emim ⁺ Ac ⁻ \rightarrow Carbene+HAc in	
OM and QM methods.	4
	at different calculation levels

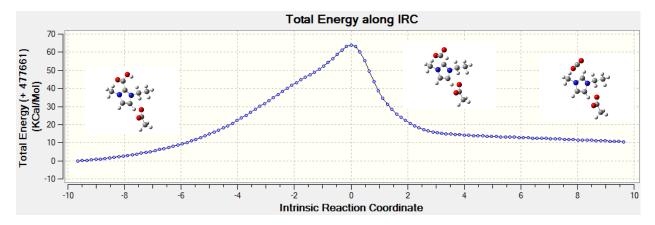


Figure S1: Energy profile for a possible direct reaction between EMIM⁺Ac⁻ IL and CO₂. The energy barrier is about 267 kJ/mol.

Table S1: Calculated energies a for species involved in carbone formation and carboxylate steps in Figure S2 at different calculation levels.

Species	Relative Energies					
	B3LYP/6-31+G(d,p)	PBE0/cc-PVTZ	PCM^{b}			
$I + CO_2$	0	0	0			
$\text{TS-I} + \text{CO}_2$	7.9	1.9	34.4			
$II + CO_2$	4.5	-3.3	40.3			
III + HAc	53.7	47.2	84.5			
TS-II + HAc	60.4	54.8	91			
IV + HAc	18.5	10.9	11.5			

^a Energies in unit of kJ/mol. ^b With a dielectric constant of 30.

Table S2: Interactions between different fragments in imidazolium acetate stabilization step, E_{c-a} interactions between cation and anion of imidazolium acetate ILs, and E_{stab} the energy gained from stabilization step at B3LYP/6-31+G(d,p) level.^{*a,b*}

Ionic liquids		E_{c-a}	E_{stab}		
	E_{int}	$EMIM^+ \cdots Carboxylate$	$Ac^{-}\cdots HAc$	_	
DMIM + Ac -	-605.8	-137.8	-174.9	-431.9	-173.9
EMIM $^+$ Ac $^-$	-598.6	-134.0	-173.8	-426.4	-172.2
PMIM $^+$ Ac $^-$	-595.0	-132.0	-173.7	-423.9	-171.1
BMIM $^+$ Ac $^-$	-592.6	-131.4	-172.8	-422.3	-170.3
EEIM + Ac -		-128.9	-174.1	-420.7	-169.0

^{*a*} Energy in unit of kJ/mol. ^{*b*} BSSE correction is considered.

Table S3: Interactions between different fragments in imidazolium acetate stabilization step, E_{c-a} interactions between cation and anion of imidazolium acetate ILs, and E_{stab} the energy gained from stabilization step at B3LYP-D3/6-31+G(d,p) level.^{*a,b*}

Ionic liquids		E_{c-a}	E_{stab}		
	E_{int}	$EMIM^+ \cdots Carboxylate$	$Ac^{-}\cdots HAc$		
DMIM + Ac -	-643.2	-152.0	-177.7	-445.1	-198.1
EMIM $^+$ Ac $^-$	-624.7	-150.4	-173.1	-440.1	-184.6
PMIM $+$ Ac $-$	-622.7	-149.2	-173.0	-438.0	-184.7
BMIM $^+$ Ac $^-$	-629.2	-150.0	-176.3	-436.6	-192.6
EEIM $+$ Ac $-$	-620.8	-147.2	-173.0	-435.4	-185.4

^{*a*} Energy in unit of kJ/mol. ^{*b*} BSSE correction is considered.

Table S4: Calculated reaction energy changes ^{*a*} for Emim⁺Ac⁻ \rightarrow Carbene+HAc in solvated model by ONIOM and QM methods.

ONIOM and	Energy Change								
QM Methods	1	2	3	4	5	6	7	8	Average
PBE0/cc-pVTZ:UFF	-11.9	-5.1	0.2	-0.8	0.5	-0.3	-0.1	-1	2.3
$PBE0/cc$ - $pVTZ:UFF_E^b$	-14.9	-6.0	5.9	-11.5	-14.5	-4.0	-11.9	-11	-8.5
PBE0/cc-pVTZ:Dreiding	-9.5	-4.6	2.2	-1.3	0.4	1.4	-0.4	-1.5	-1.7
$PBE0/cc-pVTZ:Dreiding_E^b$	-12.5	-5.5	7.9	-12.0	-14.6	-2.3	-12.2	-11.5	-7.8
PBE0/cc-pVTZ:RHF/STO-3G	112.5	71.2	67.3	12.3	27.5	6.1	28.3	8.9	41.8
PBE0/cc-pVTZ:RHF/3-21G	91.6	56.0	57.2	9.8	12.8	6.1	19.9	8.2	32.7
PBE0/6-31+G(d,p)	78.4	53.5	57.1	12.3	19.4	4.3	21.8	10.2	32.1

^a Energy in unit of kJ/mol. ^b Subscript E donates electronic embedding.

Figure S2: Reaction profile of carbone formation and carboxylate for EMIM⁺Ac⁻. Detailed data are listed in Table S1.

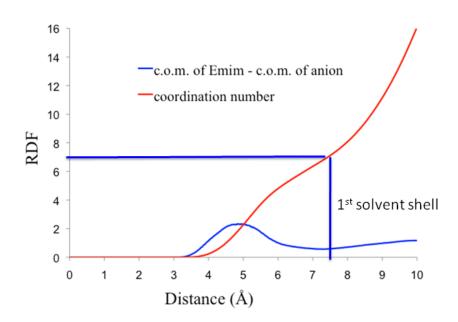


Figure S3: Radial distribution function (blue line) and integrated coordination number (red line) with respect to the center of mass (c.o.m.) of EMIM⁺ cation and the center of mass (c.o.m.) of Ac⁻ anion. The first solvent shell is at a distance of ~ 7.5 Å, with a coordination number of 7.

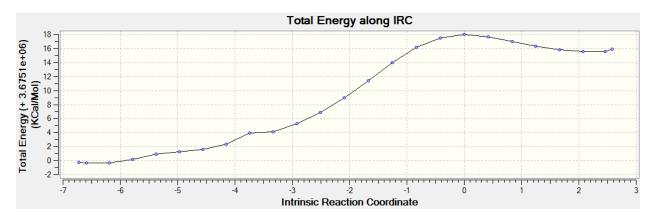


Figure S4: Energy profile for direct reaction between EMIM⁺Ac⁻ IL and CO₂ in solvated model. The energy barrier is about 96.6 kJ/mol.

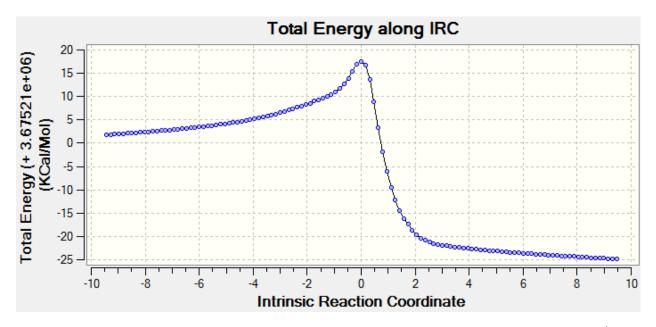


Figure S5: Energy profile for the first step of our proposed mechanism between EMIM⁺Ac⁻IL and CO₂ in solvated model. The energy barrier is about 66.1 kJ/mol.

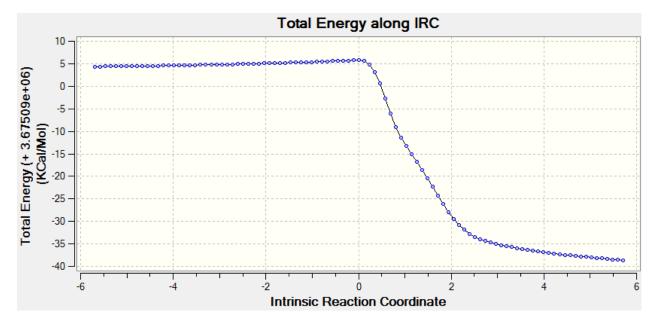


Figure S6: Energy profile for the second step of our proposed mechanism between $EMIM^+Ac^-$ IL and CO_2 in solvated model. The energy barrier is about 6.0 kJ/mol.