Surface Modified Multifunctional ZnFe₂O₄ Nanoparticles for Hydrophobic and Hydrophilic Anti-Cancer Drug Molecules Loading

Debabrata Maiti, [†] Arindam Saha[†] and Parukuttyamma Sujatha Devi^{*}

Sensor & Actuator Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, India.

† These two authors contributed equally.

*E-mail:psujathadevi@cgcri.res.in, psujathadevi@gmail.com

Fig. S1: FT-IR spectra of (a) Fe-Oleate (b) Zn-Oleate (c) as prepared ZnFe₂O₄ nanoparticles

Fig. S2: The measured particle size distribution of (a) chloroform dispersed $ZnFe_2O_4$ nanoparticles (inset) and the average particles size is ~20 nm.

Fig. S3: (a) Fast Fourier transformation (FFT) pattern clearly indicates the mono crystalline nature of the particles which have 311 planes of $ZnFe_2O_4$ (b) Energy-dispersive X-ray spectroscopy (EDS) shows the presence of Zn and Fe elements in the sample (c) and (d) are HRTEM images of $ZnFe_2O_4$ nanoparticles.

Fig. S4: (a) The excitation spectrum at $\lambda_{\text{emission}}$ 480 nm and (b) Emission spectrum at $\lambda_{\text{excitation}}$ -400 nm of ZnFe₂O₄ nanoparticles.

Fig. S5: The photoluminescence spectra of chloroform dispersed ZnFe₂O₄ nanoparticles. The solution was excited at different excitation wavelengths, $\lambda_{\text{excitation}}$ - 320, 340, 360, 380, 400 and 420 nm and emission peaks were centered at 470-480 nm. The highest intense peak was $\lambda_{\text{emission}}$ -480 nm corresponding to the $\lambda_{\text{excitation}}$ -400 nm

Fig. S6: Fluorescamine test performed to confirm the presence of primary amines groups on hydrophilic nanoparticle. For the test 200 μ l of hydrophilic ZnFe₂O₄ solution and 100 μ l of carbonate buffer solution were mixed together and fluorescamine was added the solution. The emission of the solution was carried upon excitation wavelength of 400 nm.

Fig. S7: The photoluminescence spectra of water dispersed $ZnFe_2O_4$ and DAUN loaded $ZnFe_2O_4$ nanoparticles on excitation at 360 nm.

Fig. S8: UV-visible spectra for (a) Curcumin loading and (b) DAUN loading on $ZnFe_2O_4$ nanoparticles

Fig. S9: Zeta potential measurement of hydrophilic and drug loaded ZnFe₂O₄ nanoparticle

Fig. S10: Hydrodynamic particle size of $ZnFe_2O_4$ nanoparticles in DMEM and different pH-buffer solutions.

Fig. S11: Colloidal stability of $ZnFe_2O_4$ nanoparticles in DMEM and different pH-buffer solutions. Digital images show optically clear solutions.

Fig. S12: Emission spectra depicting the drug release from curcumin loaded $ZnFe_2O_4$ nanoparticles a) at pH ~5 b) at pH ~7.4 and DAUN loaded $ZnFe_2O_4$ nanoparticles c) at pH ~5 and d) at pH ~7.4

Fig. S13 The bright field (a,c) and fluorescence (b,d) imaging of CHO and HeLa cells respectively.

Fig. S14: MTT assay of ZnFe₂O₄ nanoparticles (A, B), daunorubicin (C, D) and curcumin (E, F), daunorubicin (G-J) and curcumin (K-N) loaded ZnFe₂O₄ nanoparticles treated on normal cell line (CHO).