ELECTRONIC SUPPLEMENTARY INFORMATION:

Self-interaction error in DFT-based modelling of ionic liquids

Isabel Lage-Estebanez,^a Anton Ruzanov,^b José M. García de la Vega,^{*a} Maxim V. Fedorov^c and Vladislav B. Ivaništšev^b

^a Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain.

^b Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia

^c Department of Physics, Scottish Universities Physics Alliance (SUPA), Strathclyde University, John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, UK.

^{*} Email: garcia.delavega@uam.es

Table S 1: Dependence of interaction energy $(kJ \text{ mol}^{-1})$ on the basis set. Calculations were performed using revPBE density functional with the Grimme's dispersion correction and without BSSE correction

Ionic Pair	DZ	DZP	TZP	TZ2P	QZ4P
[BMIm]Cl	-418.02	-425.89	-407.02	-408.23	-396.18
[BMIm]I	-378.74	-381.75	-373.30	-379.66	-361.54
[BMIm]SCN	-363.63	-374.01	-366.69	-366.02	-365.51
$[BMIm][BF_4]$	-353.80	-370.58	-362.25	-361.00	-359.82
$[BMIm][N(CN)_2]$	-355.68	-364.59	-356.85	-355.93	-355.81
$[BMIm][PF_6]$	-325.31	-349.41	-343.00	-341.41	-341.79
[BMIm][TFSI]	-379.74	-352.13	-340.12	-340.33	-339.62
[BMIm][FEP]	-312.25	-320.20	-310.66	-304.18	-312.54
[BPy]Cl	-434.97	-441.87	-415.51	-416.89	-403.38
[BPy]I	-389.78	-392.92	-377.40	-383.63	-366.02
[BPy]SCN	-385.35	-387.27	-367.65	-368.11	-367.10
$[BPy][BF_4]$	-358.07	-365.26	-349.91	-349.91	-350.24
$[BPy][N(CN)_2]$	-366.64	-373.30	-359.95	-359.57	-359.36
$[BPy][PF_6]$	-325.26	-337.15	-326.06	-326.14	-327.82
[BPy][TFSI]	-368.48	-347.98	-334.68	-335.14	-334.22
[BPy][FEP]	-297.90	-296.81	-275.01	-304.05	-277.52
[BMPyr]Cl	-402.12	-411.75	-397.31	-397.69	-387.19
[BMPyr]I	-359.03	-362.25	-360.41	-366.31	-349.57
[BMPyr]SCN	-355.64	-365.18	-358.65	-358.19	-358.02
$[BMPyr][BF_4]$	-347.65	-364.18	-358.15	-358.82	-355.68
$[BMPyr][N(CN)_2]$	-347.48	-356.77	-352.08	-351.08	-351.20
$[BMPyr][PF_6]$	-314.89	-336.02	-331.83	-330.54	-331.04
[BMPyr][TFSI]	-353.80	-370.58	-362.25	-361.00	-359.82
[BMPyr][FEP]	-267.99	-281.54	-273.30	-272.59	-275.39

Table S 2: Basis set superposition error $(kJ \text{ mol}^{-1})$ dependence on the basis set. Calculations were performed using revPBE density functional with the Grimme's dispersion correction and according to the counterpoise method

Ionic Pair	DZ	DZP	TZP	TZ2P	QZ4P
[BMIm]Cl	-15.40	-14.90	-9.58	-9.62	-3.05
[BMIm]I	-14.35	-14.39	-14.23	-10.92	-0.75
[BMIm]SCN	-11.84	-7.95	-3.10	-2.93	-2.18
$[BMIm][BF_4]$	-6.49	-6.95	-5.06	-3.97	-2.68
$[BMIm][N(CN)_2]$	-19.12	-12.59	-3.85	-3.56	-2.18
$[BMIm][PF_6]$	-7.03	-5.56	-2.89	-1.88	-1.51
[BMIm][TFSI]	-43.47	-14.27	-5.44	-4.60	-2.43
[BMIm][FEP]	-18.66	-9.50	-4.73	-3.56	-4.60
[BPy]Cl	-35.90	-30.67	-15.94	-15.86	-4.69
[BPy]I	-13.43	-14.85	-13.68	-16.61	-0.84
[BPy]SCN	-19.87	-14.48	-3.56	-3.26	-2.26
$[BPy][BF_4]$	-17.82	-15.27	-4.94	-3.93	-2.09
$[BPy][N(CN)_2]$	-27.45	-18.79	-4.69	-4.31	-2.18
$[BPy][PF_6]$	-40.21	-24.52	-6.53	-4.02	-2.30
[BPy][TFSI]	-32.64	-14.23	-3.68	-3.10	-1.80
[BPy][FEP]	-26.07	-17.07	-4.48	-3.56	-2.59
[BMPyr]Cl	-19.71	-20.84	-13.68	-13.77	-4.06
[BMPyr]I	-12.05	-11.97	-13.72	-16.86	-1.00
[BMPyr]SCN	-12.93	-8.41	-2.59	-2.38	-1.76
$[BMPyr][BF_4]$	-7.70	-6.90	-4.81	-3.93	-2.68
$[BMPyr][N(CN)_2]$	-16.48	-10.42	-3.43	-3.14	-1.84
$[BMPyr][PF_6]$	-6.82	-4.44	-2.51	-1.63	-1.00
[BMPyr][TFSI]	-40.79	-10.84	-4.77	-4.02	-1.88
[BMPyr][FEP]	-16.15	-7.61	-4.48	-3.60	-3.72

Ionic Pair DZDZP TZPTZ2PQZ4PMP2[BMIm]Cl 7.79.28.17.48.18.1[BMIm]SCN 12.412.112.713.112.512.4 $[BMIm][N(CN)_2]$ 11.610.910.710.710.510.8 $[BMIm][BF_4]$ 13.412.712.912.912.713.0 $[BMIm][PF_6]$ 14.515.214.314.514.514.2[BMIm][TFSI] 12.111.511.611.311.511.6[BMIm][FEP] 15.515.215.315.615.115.6[BPy]Cl 6.76.46.76.77.08.2[BPy]SCN 10.29.910.110.110.211.9 $[BPy][N(CN)_2]$ 10.69.910.010.09.710.9 $[BPy][BF_4]$ 13.112.3 12.712.712.312.6 $[BPy][PF_6]$ 15.214.414.214.514.614.6[BPy][TFSI] 13.613.013.212.713.113.3[BPy][FEP] 14.914.815.115.314.615.4[BMPyr]Cl 13.012.412.612.612.613.8[BMPyr]SCN 14.213.513.413.413.113.4 $[BMPyr][N(CN)_2]$ 12.712.312.813.512.312.0 $[BMPyr][BF_4]$ 14.914.114.214.314.114.6[BMPyr][PF₆] 17.116.216.216.216.016.5[BMPyr][TFSI] 14.614.715.214.415.215.2[BMPyr][FEP] 18.117.817.817.817.618.3

Table S 3: Dependence of dipole moment (D) on the basis set. Calculations were performed using revPBE density functional in comparison to the MP2/6-311+G(3df) result

Ionic Pair	revPBE+DB/ATZ2P	revPBE+DB/TZ2P	MP2
[BMIm]Cl	-396.60	-398.61	-378.23
[BMIm]SCN	-378.78	-363.09	-366.82
$[BMIm][N(CN)_2]$	-354.22	-357.02	-366.87
$[BMIm][BF_4]$	-355.85	-352.38	-365.23
$[BMIm][PF_6]$	-349.95	-339.53	-347.25
[BMIm][TFSI]	-354.93	-335.72	-363.44
[BMIm][FEP]	-313.55	-300.62	-349.75
[BPy]Cl	-399.15	-401.04	-371.77
[BPy]SCN	-363.25	-364.84	-348.67
$[BPy][N(CN)_2]$	-344.18	-345.97	-349.72
$[BPy][BF_4]$	-355.18	-355.26	-343.35
$[BPy][PF_6]$	-323.34	-322.13	-325.56
[BPy][TFSI]	-329.20	-332.04	-330.87
[BPy][FEP]	-298.82	-300.49	-326.78
[BMPyr]Cl	-386.52	-383.92	-375.99
[BMPyr]SCN	-375.60	-355.81	-353.02
$[BMPyr][N(CN)_2]$	-349.82	-354.89	-350.22
$[BMPyr][BF_4]$	-355.51	-347.94	-347.49
$[BMPyr][PF_6]$	-343.21	-328.90	-321.83
[BMPyr][TFSI]	-338.23	-314.43	-310.35
[BMPyr][FEP]	-279.45	-268.99	-284.14

Table S 4: BSSE corrected interaction energy (kJ mol⁻¹) calculated with TZ2P and ATZ2P basis sets at revPBE level in comparison to the BSSE corrected MP2/6-311+G(3df) result

Ionic Pair	revPBE+DB/ATZ2P	revPBE+DB/TZ2P	MP2
[BMIm]Cl	8.2	8.1	9.2
[BMIm]SCN	12.3	12.4	12.7
$[BMIm][N(CN)_2]$	10.5	10.7	10.8
$[BMIm][BF_4]$	13.0	12.9	13.0
$[BMIm][PF_6]$	14.6	14.5	14.5
[BMIm][TFSI]	11.9	11.6	11.5
[BMIm][FEP]	15.6	15.6	15.6
[BPy]Cl	6.8	6.7	8.2
[BPy]SCN	10.2	10.2	11.9
$[BPy][N(CN)_2]$	9.6	10.0	10.9
$[BPy][BF_4]$	12.5	12.7	12.6
$[BPy][PF_6]$	14.5	14.6	14.5
[BPy][TFSI]	13.2	13.2	13.1
[BPy][FEP]	15.2	15.3	15.4
[BMPyr]SCN	13.1	13.4	13.8
[BMPyr]Cl	12.7	12.6	13.4
$[BMPyr][N(CN)_2]$	12.1	12.3	12.8
$[BMPyr][BF_4]$	14.2	14.3	14.6
[BMPyr][PF ₆]	16.2	16.6	16.5
[BMPyr][TFSI]	15.2	15.2	15.2
[BMPyr][FEP]	18.2	17.8	18.3

Table S 5: Dipole moment (D) calculated with TZ2P and ATZ2P basis sets at revPBE level in comparison to the MP2/6-311+G(3df) result

Table S 6: Interaction energy (kJ mol⁻¹) calculated at revPBE/TZ2P level including full Perdew–Zunger (PZ) and scaled Perdew–Zunger (sPZ) corrections in comparison to the BSSE corrected MP2/6-311+G(3df) result

Ionic Pair	revPBE+PZ	revPBE+sPZ	MP2
[BMIm]Cl	-247.79	-368.45	-378.23
[BMIm]I	-188.36	-332.66	-324.63
[BMIm]SCN	-304.65	-351.40	-348.52
$[BMIm][BF_4]$	-347.31	-355.08	-354.63
$[BMIm][N(CN)_2]$	-331.54	-348.21	-355.14
$[BMIm][PF_6]$	-326.85	-337.00	-340.68
[BMIm][TFSI]	-295.97	-327.77	-336.82
[BMIm][FEP]	-324.07	-305.31	-331.84
[BPy]Cl	-206.37	-362.10	-371.77
[BPy]I	-154.67	-324.55	-316.74
[BPy]SCN	-301.08	-352.09	-348.67
$[BPy][BF_4]$	-337.60	-344.30	-349.72
$[BPy][N(CN)_2]$	-324.79	-349.17	-353.03
$[BPy][PF_6]$	-303.60	-318.42	-325.56
[BPy][TFSI]	-370.33	-339.70	-330.87
[BPy][FEP]	-321.43	-304.68	-326.78
[BMPyr]Cl	-232.76	-353.69	-375.99
[BMPyr]I	-209.80	-321.52	-326.97
[BMPyr]SCN	-335.23	-351.69	-353.02
$[BMPyr][BF_4]$	-293.08	-342.52	-350.22
$[BMPyr][N(CN)_2]$	-322.98	-342.95	-347.49
$[BMPyr][PF_6]$	-307.90	-324.70	-321.83
[BMPyr][TFSI]	-321.32	-315.81	-310.35
[BMPyr][FEP]	-263.45	-267.88	-283.28