Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supporting Material

UNEXPECTED MULTIPLE ACTIVATED STEPS IN THE EXCITED STATE DECAY OF SOME *BIS*(PHENYLETHYNYL)-FLUORENES AND –ANTHRACENES

G. Cacioppa, B. Carlotti, F. Elisei, P.L. Gentili, A. Marrocchi and A. Spalletti

Department of Chemistry, Biology and Biotechnology and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN) University of Perugia, via Elce di Sotto 8, 06123 Perugia (Italy) E-mail: <u>anna.spalletti@unipg.it</u>

SI1. Temperature effect on the spectral behavior

Fig. S1 Absorption (upper) and normalized emission (bottom) spectra of **NA** and **AA** in MCH as a function of temperature.

Fig. S2 Absorption (upper) and normalized emission (bottom) spectra of NF in Tol and AF in Tol and DCM at different temperatures.

Fig. S3 Non-normalized emission spectra of NA and AA in MCH as a function of temperature.

Fig. S4 Non-normalized emission spectra of NF and AF in Tol as a function of temperature.

Fig. S5 Non-normalized emission spectra of AF in DCM as a function of temperature.

Fig. S6 $T_1 \rightarrow T_n$ absorption spectrum of **AA** in MCH at 358 K (left) and **AF** in Tol at 195 K at different delays after the laser pulse (right).

Fig. S7 AF in Tol at 293 K (A), 280 K (B), 250 K (C), 235 K (D), and 205 K (E). The top parts of the graphs show the profiles of the decay (red traces) and prompt (black traces), whereas the bottom parts show the output of the MEM analysis.

Fig. S8 NF in Tol at 250 K (A) and 220 K (B). The top parts of the graphs show the profiles of the decay (red traces) and prompt (black traces), whereas the bottom parts show the output of the MEM analysis.

Fig. S9 NA in MCH at 353 K (A) and 293 K (B). The top parts of the graphs show the profiles of the decay (red traces) and prompt (black traces), whereas the bottom parts show the output of the MEM analysis.

Fig. S10 AA in MCH at 358 K (A) and 293 K (B). The top parts of the graphs show the profiles of the decay (red traces) and prompt (black traces), whereas the bottom parts show the output of the MEM analysis.

SI3. Experimental data fittings

Fig. S11 Fitting of ln k_{IC} against 1/T according to eq. 1 for **AA** in MCH, by fixing $k_{IC}^0 = 3.5 \times 10^7 \text{ s}^{-1}$.

Fig. S12 Fitting of $ln[1/\phi_F(T)]$ against 1/T according to eq. 3 for **AA** in MCH, by fixing $\phi_F^{lim} = 0.9$.

Fig. S13 Fitting of ln k_{ISC} against 1/T according to eq. 1 for **NF** in Tol (the fitting parameters A, B and C being k_{ISC}^{0} , A and $E_{a,ISC}/RT$, respectively).

Fig. S14 Fitting of ln k_{IC} against 1/T according to eq. 2 for **NF** in Tol.

Fig. S15 Fitting of ln k_{ISC} against 1/T according to eq. 1 for **AF** in Tol (the fitting parameters A, B and C being k_{ISC}^{0} , A and $E_{a,ISC}/RT$, respectively).

Fig. S16 Fitting of ln k_{IC} against 1/T according to eq. 1 for **AF** in Tol (the fitting parameters A, B and C being k_{IC}^0 , A and $E_{a,IC}/RT$, respectively).

SI4. Quantum mechanical calculations.

Chart S1 Molecular structure of the ground state of **AF** as optimized by HF in Tol.

Excited state	Transition energy /eV	λ /nm	Nature	%	f
T ₁	2.3831	520	$\pi_{H \rightarrow} \pi_L^*$	55	0.0000
T ₂	2.7818	446	$\pi_{H \rightarrow} \pi_{L+1}^{*}$	41	0.0000
S ₁	3.0019	413	$\pi_{H \rightarrow} \pi_L^*$	96	1.5879
T ₃	3.2302	384	$n_{H-5} \rightarrow \pi_L^*$	75	0.0000
T_4	3.3051	375	$\pi_{H-1} \rightarrow \pi_{L+1}^{*}$	32	0.0000
T ₅	3.3473	370	$\pi_{H \rightarrow} \pi_{L}^{*}$	43	0.0000
S ₂	3.6363	341	$\pi_{H-1} \rightarrow \pi_L^*$	71	1.0554
S ₃	3.7238	333	$n_{H-5} \rightarrow \pi_L^*$	82	0.0000
S_4	3.7410	331	$\pi_{H \rightarrow} \pi_{L+1}^{*}$	73	0.2387
T ₆	3.8021	326	$\pi_{H-2} \rightarrow \pi_{L+1}^{*}$	11	0.0000
T ₇	3.8961	318	$\pi_{H \rightarrow} \pi_{L+2}^{*}$	58	0.0000
T ₈	3.9240	316	$\pi_{H-8} \rightarrow \pi_L^*$	76	0.0000
T ₉	3.9614	313	$\pi_{H-3} \rightarrow \pi_L^*$	53	0.0000
T ₁₀	4.0602	305	$\pi_{H \rightarrow} \pi_{L+5}^{*}$	16	0.0000
T ₁₁	4.0808	304	$\pi_{H \rightarrow} \pi_{L+5}^{*}$	48	0.0000
T ₁₂	4.1701	297	$\pi_{H-6} \rightarrow \pi_L^*$	42	0.0000
T ₁₃	4.2879	289	$\pi_{H-1} \rightarrow \pi_{L+1}^{*}$	45	0.0000
S ₅	4.2896	289	$\pi_{H \rightarrow} \pi_{L+2}^{*}$	63	0.0077
T ₁₄	4.3068	288	$\pi_{H-2} \rightarrow \pi_L^*$	24	0.0000
S ₆	4.3377	286	$\pi_{H-1} \rightarrow \pi_{L+1}^{*}$	37	0.0163

Table S1. Transition energy, nature and oscillator strength (f) of the lowest excited singlet and triplet states of **AF** in Tol obtained by TDDFT/B3LYP calculation after HF optimisation of the ground state; the 6-31G(d) basis set was used in all cases.

Excited state	Transition energy /eV	λ/nm	Nature	%	f
T ₁	2.1013	590	$\pi_{H \rightarrow} \pi_L^*$	60	0.0000
T ₂	2.5225	491	$\pi_{H \rightarrow} \pi_{L + 1}^{*}$	44	0.0000
S ₁	2.7487	451	$\pi_{H \rightarrow} \pi_L^*$	97	1.7178
T ₃	3.1007	400	$\pi_{H \rightarrow} \pi_L^*$	30	0.0000
T_4	3.1074	399	$n_{H-5 \rightarrow} \pi_L^*$	75	0.0000
T ₅	3.1262	397	$\pi_{H-1} \rightarrow \pi_{L+1}^{*}$	30	0.0000
S ₂	3.4031	364	$\pi_{H-1} \rightarrow \pi_L^*$	69	1.0630
S ₃	3.5433	350	$\pi_{H \rightarrow} \pi_{L+1}^{*}$	70	0.2150
S ₄	3.5921	345	$n_{H-5 \rightarrow} \pi_L^*$	82	0.0000
T ₆	3.6521	339	$\pi_{H-2} \rightarrow \pi_{L+1}^{*}$	13	0.0000
T ₇	3.7382	332	$\pi_{H-7} \rightarrow \pi_L^*$	59	0.0000
T ₈	3.7460	331	$\pi_{H-3} \rightarrow \pi_L^*$	35	0.0000
T ₉	3.7885	327	$\pi_{H \rightarrow} \pi_{L + 3}^{*}$	33	0.0000
T ₁₀	3.8705	320	$\pi_{H-2} \rightarrow \pi_L^*$	29	0.0000
T ₁₁	3.9700	312	$\pi_{H \rightarrow} \pi_{L+5}^{*}$	61	0.0000
T ₁₂	4.0082	309	$\pi_{H-6} \rightarrow \pi_L^*$	44	0.0000
T ₁₃	4.1006	302	$\pi_{H-1} \rightarrow \pi_{L+1}^{*}$	43	0.0000
S ₅	4.1160	301	$\pi_{H-2} \rightarrow \pi_L^*$	56	0.0146
T ₁₄	4.1253	301	$\pi_{H-9} \rightarrow \pi_L^*$	80	0.0000
T ₁₅	4.1305	300	$\pi_{H-2} \rightarrow \pi_L^*$	19	0.0000

Table S2. Transition energy, nature and oscillator strength (f) of the lowest excited singlet and triplet states of **AF** in DCM obtained by TDDFT/B3LYP calculation after HF optimisation of the ground state; the 6-31G(d) basis set was used in all cases.

Fig. S17 Absorption spectra of **AF** obtained by TDDTF/B3LYP calculation after HF optimisation of the ground state; the 6-31G(d) basis set was used in all cases.

Fig. S18 Most relevant frontier *molecular* orbitals of AF in Tol obtained by B3LYP/6-31G(d).

Fig. S19 Effect of the dihedral angle θ (Chart S1) on the energy of **AF** in Tol obtained by HF/6-31G(d).

Table S3. Energies (in eV) of the S₁ and S₂ states of two conformers (θ = 0 and 90 deg, Chart S1) of **AF** in Tol calculated by TDDFT/B3LYP model after HF optimisation of the ground state (the 6-31G(d) basis set was used in all cases).

State	Nature	θ = 0 deg	θ = 90 deg
S ₁	π, π*	3.7240	3.9673
S ₂	n, π*	3.9895	3.9971

SI5. Up-conversion measurements

Fig. S20 Fluorescence up–conversion (λ_{exc} =400 nm) of **NA** in CH (left) and **AF** in Tol (right): A) contour plot of the experimental data, B) time resolved emission spectra. Inset: decay kinetics recorded at meaningful wavelengths and C) SAS of the decay components obtained by Target Analysis.

Fig. S21 Decay kinetics recorded at meaningful wavelengths for **NF** in different solvents (the long living component of 285 ps in DCE and 295 ps in DCM, revealed by the fitting of the up conversion kinetics and not previously observed by transient absorption measurements,⁷ is probably due to an impurity detected during the emission experiments because of the low fluorescence quantum yield of **NF**).

Fig. S22 *TRANES* spectral evolution of **AA** in CH recorded between 0.55 and 2650 ps after the laser pulse.

Fig. S23 Concentration profiles of the various transients obtained from the Target Analysis of the fluorescence up-conversion data of **AF** in DCM.

Fig. S24 Steady-state fluorescence emission spectra (recorded in Front Face geometry) of **AA** in CH in solutions of different concentrations (the highest concentration, black spectrum, corresponds to that used during the up-conversion measurements; the lowest concentration, blue spectrum, to that used during the stationary fluorimetric experiments).

Experimental Details.

Single-photon counting measurements and MEM analysis - All the data acquired by single-photon counting method with 0.2 ns resolution, were analyzed by IBH Data Analysis software; the program allows the decay profile of the source from the sample decay to be deconvoluted and provides the fitting of the data, whose goodness is evaluated by means of residuals distribution and the χ^2 value. The kinetic traces were also analyzed by means of the Maximum Entropy Method (MEM) by means of the MEMEXP Software available online. In the Maximum Entropy Method the experimental decay I(t) is fitted by the following function:

$$I(t) = D_0 \int_{-\infty}^{+\infty} d\log \tau [g(\log \tau) - h(\log \tau)] \int_{-t_0}^{\min(t,t_f)} dt' R(t') e^{-(t_i - t')/\tau} + \sum_{k=0}^{3} (b_k - c_k)$$
(1)

where $g(\log \tau)$ and $h(\log \tau)$ are the lifetime distributions that correspond to decay and rise kinetics, respectively, D_0 is a normalization constant, and the polynomial term accounts for the baseline. The instrument response function R(t) is peaked at zero time and is appreciable only in the interval [-t₀, t_f]. The fit procedure entails the maximization of the function Q defined in equation (2):

$$Q = S - \lambda C - \alpha I$$

In equation (2), S is entropy defined as:

$$S(f,F) = \sum_{j=1}^{M} [f_j - F_j - f_j \ln(f_j / F_j)]$$
(3)

where *f* is the image that includes both the *g* and the *h* lifetime distributions, whereas *F* is the MEM prior distribution used to incorporate prior knowledge into the solution. *C* is a measure of the quality of the fit *F* to the data. When we analyzed the kinetic traces of femtosecond transient absorption with normally distributed noise, *C* was the χ^2 . For Poisson-distributed data like those collected by the single photon counting technique, *C* was the Poisson deviance. *I* is a normalization factor; λ and α are Lagrange multipliers.