Interaction of Nucleobases with Silicon Doped and Defective Silicon Doped Graphene and

Optical properties

Sathish Kumar Mudedla ^{a, b}, Kanagasabai Balamurugan^a, Manoharan Kamaraj ^a, and Venkatesan Subramanian^{a, b, *}

a Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020, India

b Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus, Chennai 600 020, India

.* To whom correspondence should be addressed. Tel.: +91 44 24411630. Fax: +91 44 24911589. E-mail: subuchem@hotmail.com, <u>subbu@clri.res.in</u>.

Model	Z(+)	Z(-)	Absence
5SiGr-A	-53.55	-56.63	-55.06
5SiGr-G	-60.25	-58.26	-57.34
5SiGr-T	-46.77	-48.80	-47.80
5SiGr-C	-56.52	-62.29	-61.30
5SiGr-U	-42.76	-44.85	-43.90

Table S1 The Interaction energies (IEs) (kcal/mol) for the 5SiGr-NBs Complexes in the

 Presence and Absence of Electric Field

Table S2 The Energy Decomposition Analysis of the Complexes formed by NBs with Gr-L,SiGr-L, 5SiGr-L and 57SiGr-L

Model	NB	Ele. Stat Energy (kcal/mol)	Pau. Rep Energy (kcal/mol)	Orb. Int Energy (kcal/mol)	Disp. Energy (kcal/mol)	Inter. Energy (kcal/mol)
	А	-11.78	30.96	-6.47	-32.74	-20.04
	G	-13.04	34.87	-9.61	-35.84	-23.62
Gr-L	Т	-10.95	30.28	-7.21	-31.40	-19.28
	С	-10.78	28.52	-7.72	-28.53	-18.50
	U	-9.67	26.36	-6.43	-26.95	-16.69
	А	-140.74	227.36	-102.10	-16.32	-31.80
	G	-134.88	239.72	-115.42	-35.35	-45.92
SiGr-L	Т	-115.65	203.21	-91.18	-27.79	-31.41
	С	-138.94	239.67	-117.09	-27.05	-43.41
	U	-126.42	211.74	-99.20	-13.55	-27.43
	А	-111.93	165.22	-86.15	-21.90	-54.78
5SiGr-L	G	-95.01	167.33	-92.34	-40.25	-60.27
	Т	-87.79	152.02	-75.87	-34.01	-45.65
	С	-99.66	166.06	-93.48	-30.67	-57.75
	U	-84.36	144.57	-73.88	-27.76	-41.42
	А	-132.58	212.07	-98.54	-19.53	-38.58
57SiGr-L	G	-124.51	219.66	-108.94	-35.58	-49.37
	Т	-118.00	205.99	-96.71	-34.65	-43.36
	С	-127.59	222.40	-114.36	-29.55	-49.10
	U	-108.01	186.41	-85.82	-24.89	-32.32

Ele. Stat Energy = Electrostatic Energy, Orb. Int Energy = Orbital Interaction Energy, Pau. Rep Energy = Pauli Repulsion Energy, Disp. Energy = Dispersion Energy, Inter. Energy = Interaction Energy.

Table S3	3 The	Second-Ord	ler Per	turbation	Theory	Analysis	of	Fock	Matrix	for	the	Complex
Formed b	y SiGr	r-L, 5SiGr-L	, and 5'	7SiGr-L	with NBs	5						

Complex	Charge Transfer Interaction	E ⁽²⁾ (kcal/mol)
SiGr-L-A	$LP(N) \longrightarrow LP^*(Si)$	154.28
SiGr-L-G	$LP(O) \longrightarrow LP^*(Si)$	215.72
SiGr-L-T	$LP(O) \longrightarrow LP^*(Si)$	199.11
SiGr-L-C	$LP(O) \longrightarrow LP^*(Si)$	243.77
SiGr-L-U	$LP(O) \longrightarrow LP^*(Si)$	170.26
5SiGr-L-A	$LP(N) \longrightarrow LP^*(Si)$	220.99
5SiGr-L-G	$LP(O) \longrightarrow LP^*(Si)$	267.29
5SiGr-L-T	$LP(O) \longrightarrow LP^*(Si)$	245.95
5SiGr-L-C	$LP(O) \longrightarrow LP^*(Si)$	278.27
5SiGr-L-U	$LP(O) \longrightarrow LP^*(Si)$	243.16
57SiGr-L-A	$LP(N) \longrightarrow LP^*(Si)$	154.76
57SiGr-L-G	$LP(O) \longrightarrow LP^*(Si)$	207.64
57SiGr-L-T	$LP(O) \longrightarrow LP^*(Si)$	183.60
57SiGr-L-C	$LP(O) \longrightarrow LP^*(Si)$	230.15
57SiGr-L-U	$LP(O) \longrightarrow LP^*(Si)$	175.59

LP is lone pair occupied orbital and LP* is unoccupied orbital

Table S4 The Calculated NICS (0) values at the Center of Pyrimidine and Imidazole Ring of Nucleobases (A, G, T, C and U)

Model	G		ŀ	ł	Т	С	U
	Pyr	Imi	Pyr	Imi	Pyr	Pyr	Pyr
Parent	-3.13	-12.82	-7.07	-9.57	-1.45	-1.30	-1.27
Gr-L	-11.26	-20.60	-15.02	-19.95	-9.84	-9.51	-9.36
SiGr-L	-11.87	-16.93	-9.49	-14.81	-7.26	-9.19	-5.16
5SiGr-L	-16.81	-21.20	-15.01	-20.10	-12.02	-13.96	-11.38
57SiGr-L	-8.76	-14.99	-7.91	-14.36	-6.37	-6.73	-4.15

Pyr - pyrimidine ring, Imi – imidazole ring

Fig. S1 The optimized geometries of Gr, SiGr, 5SiGr and 57SiGr at M06-2X/6-31+G** level of theory.

Fig. S2 The optimized geometries of the complexes of Gr, SiGr, 5SiGr and 57SiGr with NBs at M062X/6-31+G** level of theory.

Fig. S3 The optimized geometries of Gr-L, SiGr-L, 5SiGr-L and 57SiGr-L at M06-2X/6-31+G** level of theory.

Fig. S4 The molecular graphs for the complexes of SiGr, 5SiGr and 57SiGr with NBs.

Fig. S5 The density of states (DOS) for all the complexes of Gr, SiGr, 5SiGr and 57SiGr with NBs.

Fig. S6 The simulated absorption spectrum of Gr-L, SiGr-L, 5SiGr-L and 57SiGr-L at M06-2X/6-31G** level of theory.

Fig. S7 The simulated absorption spectrum of the complexes of nucleobases with Gr-L at M06- $2X/6-31G^{**}$ level of theory.

Fig. S8 The simulated absorption spectrum of the complexes of nucleobases with SiGr-L and 5SiGr-L at M06-2X/6-31G** level of theory.

Fig. S9 The contour pictures of orbital involved in the transitions modified with NBs.