Electronic supplementary information

Realizing the Diverse Electronic and Magnetic Properties in the Hybrid Zigzag BNC Nanoribbons via Hydrogenation

Yuanhui Sun, Guangtao Yu, Jingwei Liu, Xiaopeng Shen, Xuri Huang, Wei Chen*
Institute of Theoretical Chemistry, International Joint Research Laboratory of NanoMicro Architecture Chemistry, Jilin University, Changchun 130023, People's Republic of China

*To whom correspondence should be addressed. Email: xychwei@gmail.com
(a)

Side view

$\Delta \mathrm{E}=0$
(b)

Chair
Top
view

Side view

$\Delta \mathrm{E}=1.632 \mathrm{eV}$

Boat

$\Delta \mathrm{E}=2.858 \mathrm{eV}$
Boat

$\Delta \mathrm{E}=0$

Stirrup

$\Delta \mathrm{E}=1.264 \mathrm{eV}$

$\Delta \mathrm{E}=0.768 \mathrm{eV}$

Figure S1. Top and side views of $f \mathrm{H}-\mathrm{zGNR}$ (a) and $f \mathrm{H}-\mathrm{zBNNR}$ (b) with chair, boat and stirrup configurations, as well asthe relative energies $(\Delta \mathrm{E})$ of different configurations to the most one. It is shown that the chair-like and boat-like configurations are the energetically most favorable for $f \mathrm{H}-\mathrm{zGNR}$ and $f \mathrm{H}-\mathrm{zBNNR}$, respectively.

$$
4 \mathrm{BN}(b) \text {-chair- } 4 \mathrm{C}_{2}(b)
$$

$4 \mathrm{BN}(b)$-boat- $4 \mathrm{C}_{2}(b)$

4BN(c)-chair-4C2 $\mathrm{C}_{2}(b)$

$4 \mathrm{BN}(s)$-chair-4C $\mathrm{C}_{2}(c)$
$4 \mathrm{BN}(s)$-chair-4C $\mathrm{C}_{2}(s)$

$4 \mathrm{BN}(s)$-chair- $4 \mathrm{C}_{2}(b)$

Figure S2. The obtained geometrical structures of the fully hydrogenated $f \mathrm{H}-\mathrm{zBNCNRs}$ with the interfacial $\mathrm{N}-\mathrm{C}$ connectionby considering three possible hydrogenated configurations of chair, boat and stirrup for the constituent BN or C segment, as well as two possible modes of connection (chair or boat) between these two segments.

Table S1.The relative energies (ΔE) of different magnetic couplings to the ground state and the corresponding electronic properties for the possible $f \mathrm{H}-\mathrm{zBNCNR}$ configurations with the interfacial $\mathrm{N}-\mathrm{C}$ connection, as well as their relative energies ($\mathrm{E}_{\text {rel }}$) to the lowest-lying one. NM, FM and AFM represent the nonmagnetic, ferromagnetic and antiferromagnetic spin couplings, respectively.

System	$E_{\text {rel }}(\mathrm{meV})$	$\Delta E(\mathrm{meV})$			Electronic properties	Band gap (eV)
		NM	FM	AFM		
4BN(b)-chair-4C2 ${ }_{2}(c)$	0.0	0.0	--	--	Semiconductor	1.756
$4 \mathrm{BN}(b)$-chair-4C2 ${ }_{2}(b)$	1160.2	0.0	--	--	Semiconductor	1.703
4BN(b)-boat-4C2 ${ }_{2}(b)$	1592.3	0.0	--	--	Semiconductor	1.721
4BN(b)-boat-4C2 ${ }_{2}(c)$	359.7	0.0	--	--	Semiconductor	1.756
4BN(b)-chair-4C2 ${ }_{2}(s)$	769.8	0.0	--	--	Semiconductor	1.547
4BN(c)-chair-4C2 ${ }_{2}(b)$	2350.3	1.9	0.0	1.6	Metallicity	--
4BN(c)-boat-4C2 ${ }_{2}(b)$	2796.6	1.1	0.0	0.3	Metallicity/Half-metallicity	--
4BN(c)-chair-4C2 ${ }_{2}(c)$	1123.8	0.0	4.6	13.7	Semiconductor	0.020
$4 \mathrm{BN}(\mathrm{c})$-boat-4C2 $\mathrm{C}_{2}(\mathrm{c})$	1633.4	2.1	0.0	2.3	Half-metallicity	--
4BN(c)-chair-4C2 ${ }_{2}(s)$	1922.2	1.7	1.8	0.0	Half-metallicity	--
4BN(s)-chair-4C2 ${ }_{2}(c)$	414.5	4.0	0.0	3.0	Metallicity	--
4BN(s)-chair-4C2 ${ }_{2}(s)$	1826.7	4.8	0.9	0.0	Metallicity/Half-metallicity	--
4BN(s)-chair-4C ${ }_{2}(b)$	2867.9	4.5	0.1	0.0	Metallicity/Half-metallicity	--

Figure S3. The obtained geometrical structures of the fully hydrogenated $f \mathrm{H}-\mathrm{zBNCNRs}$ with the interfacial B-C connectionby considering three possible hydrogenated configurations of chair, boat and stirrup for the constituent BN or C segment, as well as two possible modes of connection (chair or boat) between these two segments.

Table S2.The relative energies (ΔE) of different magnetic couplings to the ground state and the corresponding electronic properties for the possible $f \mathrm{H}-\mathrm{zBNCNR}$ configurations with the interfacial B-C connection, as well as their relative energies ($\mathrm{E}_{\text {rel }}$) to the lowest-lying one. NM, FM and AFM represent the nonmagnetic, ferromagnetic and antiferromagnetic spin couplings, respectively.

System	$E_{\text {rel }}(\mathrm{meV})$	ΔE (meV)			Electronic properties	Band gap (eV)
		NM	FM	AFM		
4NB(b)-chair-4C ${ }_{2}(c)$	0.0	0.0	--	--	Semiconductor	0.217
$4 \mathrm{NB}(b)$-chair-4C2 ${ }_{2}(b)$	1180.4	0.0	--	--	Semiconductor	0.328
4NB(b)-boat-4C2 ${ }_{2}(b)$	1376.9	0.0	--	--	Semiconductor	0.466
4NB(b)-boat-4C $2_{2}(c)$	199.9	0.0	--	--	Semiconductor	0.479
$4 \mathrm{NB}(b)$-chair-4C $\mathrm{C}_{2}(s)$	945.0	0.0	--	--	Semiconductor	0.289
$4 \mathrm{NB}(c)$-chair-4C2 ${ }_{2}($ b	2355.9	5.7	0.0	0.3	Metallicity/Half-metallicity	--
4NB(c)-boat-4C2 ${ }_{2}(b)$	2754.9	6.1	0.0	0.1	Metallicity/Half-metallicity	--
$4 \mathrm{NB}(c)$-chair-4C2 ${ }_{2}(c)$	922.4	6.4	1.4	0.0	Half-metallicity	--
4NB(c)-boat-4C2(c)	1545.5	6.4	1.8	0.0	Half-metallicity	--
$4 \mathrm{NB}(c)$-chair-4C ${ }_{2}(s)$	1575.2	3.8	0.2	0.0	Metallicity/Half-metallicity	--
$4 \mathrm{NB}(s)$-chair-4C2 $\mathrm{C}_{2}(\mathrm{c})$	1112.3	4.2	0.9	0.0	Metallicity/Half-metallicity	--
$4 \mathrm{NB}(s)$-chair-4C2 $\mathrm{C}_{2}(s)$	1661.8	9.4	0.9	0.0	Metallicity/Half-metallicity	--
$4 \mathrm{NB}(s)$-chair-4C ${ }_{2}(b)$	2753.7	9.0	2.4	0.0	Half-metallicity	--

Table S3. The most favorable boat conformation and the corresponidng nonmagentic (NM) ground state for the fully hydrogenated $f \mathrm{H}-4-\mathrm{zBNNR}$ and $f \mathrm{H}-6-\mathrm{zBNNR}$ systems.

System	$\Delta E(\mathrm{meV})$		
		NM	FM
$f \mathrm{H}-4-\mathrm{zBNNR}$		0.0	--
$f \mathrm{H}-6-\mathrm{zBNNR}$		0.0	--

Table S4. Total magnatic moment per supercell for the magnetic ground states of $f \mathrm{H}-8-\mathrm{zBNNR}$, as well as fully and partially hybrid hydrogenated zBNCNRs systems. FM and AFM represent the ferromagnetic and antiferromagnetic spin couplings, respectively.

Conformation	Ground State	Total Magnetic Moment $(\mu \mathrm{B})$
$f \mathrm{H}-8-\mathrm{zBNNR}$	$\mathrm{FM} / \mathrm{AFM}$	$0.206 / 0.000$
$6 \mathrm{NB}(b)$-chair-2C	(c)	AFM
$8 \mathrm{BN}(b)$-chair- $8 \mathrm{C}_{2}(c)$	FM	0.000
$10 \mathrm{BN}(b)$-chair-10C	0.256	
$6 \mathrm{NB}(b)$-chair- $6 \mathrm{C}_{2}(c)$	AFM	0.000
$8 \mathrm{NB}(b)$-chair- $8 \mathrm{C}_{2}(c)$	FM	0.259
$10 \mathrm{NB}(b)$-chair-10C	0.466	
$p \mathrm{H}-(\mathrm{BN})_{4}\left(\mathrm{C}_{2}\right)_{4}-I I(2,0)$	FM	0.168
$p \mathrm{H}-(\mathrm{BN})_{4}\left(\mathrm{C}_{2}\right)_{4}-I I(4,0)$	AFM	0.000
$p \mathrm{H}-(\mathrm{BN})_{4}\left(\mathrm{C}_{2}\right)_{4}-I I(4,2)$	AFM	0.000
$p \mathrm{H}-(\mathrm{NB})_{4}\left(\mathrm{C}_{2}\right)_{4}-I I(2,0)$	AFM	0.130
$p \mathrm{H}-(\mathrm{NB})_{4}\left(\mathrm{C}_{2}\right)_{4}-I I(4,0)$	AFM	0.000
$p \mathrm{H}-(\mathrm{NB})_{4}\left(\mathrm{C}_{2}\right)_{4}-I I(4,2)$	AFM	0.208
$p \mathrm{H}-(\mathrm{BN})_{4}\left(\mathrm{C}_{2}\right)_{4}-I I(1,1)$	AFM	0.084
$p \mathrm{H}-(\mathrm{NB})_{4}\left(\mathrm{C}_{2}\right)_{4}-I I(1,1)$	AFM	0.000

Figure S4. The distribution of atomic magnetic moments $M(\mu B)$ in supercell for the magnetic ground states of $f \mathrm{H}-8-\mathrm{zBNNR}$ and fully hydrogenated zBNCNRs systems.

Figure S5. The distribution of atomic magnetic moments $M(\mu B)$ in supercell for the magnetic ground states of partially hydrogenated zBNCNRs systems.

