Electronic supplementary information

Realizing the Diverse Electronic and Magnetic Properties in the

Hybrid Zigzag BNC Nanoribbons via Hydrogenation

Yuanhui Sun, Guangtao Yu, Jingwei Liu, Xiaopeng Shen, Xuri Huang, Wei Chen*

Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Jilin University, Changchun 130023, People's Republic of China

*To whom correspondence should be addressed. Email: xychwei@gmail.com

Figure S1. Top and side views of *f*H-zGNR (a) and *f*H-zBNNR (b) with chair, boat and stirrup configurations, as well as the relative energies (ΔE) of different configurations to the most one. It is shown that the chair-like and boat-like configurations are the energetically most favorable for *f*H-zGNR and *f*H-zBNNR, respectively.

Figure S2. The obtained geometrical structures of the fully hydrogenated *f*H-zBNCNRs with the interfacial N-C connectionby considering three possible hydrogenated configurations of chair, boat and stirrup for the constituent BN or C segment, as well as two possible modes of connection (chair or boat) between these two segments.

Table S1.The relative energies (ΔE) of different magnetic couplings to the ground state and the corresponding electronic properties for the possible *f*H-zBNCNR configurations with the interfacial N-C connection, as well as their relative energies (E_{rel}) to the lowest-lying one. NM, FM and AFM represent the nonmagnetic, ferromagnetic and antiferromagnetic spin couplings, respectively.

System	E (V)	ΔE (meV)			Fl 4	Dand and (aV)	
System	\mathbf{E}_{rel} (mev)	NM	FM	AFM	Electronic properties	Бапи gap (ev)	
$4BN(b)$ -chair- $4C_2(c)$	0.0	0.0			Semiconductor	1.756	
$4BN(b)$ -chair- $4C_2(b)$	1160.2	0.0			Semiconductor	1.703	
$4BN(b)$ -boat- $4C_2(b)$	1592.3	0.0			Semiconductor	1.721	
$4BN(b)$ -boat- $4C_2(c)$	359.7	0.0			Semiconductor	1.756	
$4BN(b)$ -chair- $4C_2(s)$	769.8	0.0			Semiconductor	1.547	
$4BN(c)$ -chair- $4C_2(b)$	2350.3	1.9	0.0	1.6	Metallicity		
$4BN(c)$ -boat- $4C_2(b)$	2796.6	1.1	0.0	0.3	Metallicity/Half-metallicity		
$4BN(c)$ -chair- $4C_2(c)$	1123.8	0.0	4.6	13.7	Semiconductor	0.020	
$4BN(c)$ -boat- $4C_2(c)$	1633.4	2.1	0.0	2.3	Half-metallicity		
$4BN(c)$ -chair- $4C_2(s)$	1922.2	1.7	1.8	0.0	Half-metallicity		
$4BN(s)$ -chair- $4C_2(c)$	414.5	4.0	0.0	3.0	Metallicity		
$4BN(s)$ -chair- $4C_2(s)$	1826.7	4.8	0.9	0.0	Metallicity/Half-metallicity		
$4BN(s)$ -chair- $4C_2(b)$	2867.9	4.5	0.1	0.0	Metallicity/Half-metallicity		

Figure S3. The obtained geometrical structures of the fully hydrogenated *f*H-zBNCNRs with the interfacial B-C connectionby considering three possible hydrogenated configurations of chair, boat and stirrup for the constituent BN or C segment, as well as two possible modes of connection (chair or boat) between these two segments.

Table S2. The relative energies (ΔE) of different magnetic couplings to the ground state and the corresponding electronic properties for the possible *f*H-zBNCNR configurations with the interfacial B-C connection, as well as their relative energies (E_{rel}) to the lowest-lying one. NM, FM and AFM represent the nonmagnetic, ferromagnetic and antiferromagnetic spin couplings, respectively.

System	E (maV)	ΔE (meV)			Electronic proporties	Dend con (aV)	
System	E _{rel} (mev)	NM	FM	AFM	Electronic properties	Бани gap (ev)	
$4\text{NB}(b)$ -chair- $4\text{C}_2(c)$	0.0	0.0			Semiconductor	0.217	
$4NB(b)$ -chair- $4C_2(b)$	1180.4	0.0			Semiconductor	0.328	
$4NB(b)$ -boat- $4C_2(b)$	1376.9	0.0			Semiconductor	0.466	
$4NB(b)$ -boat- $4C_2(c)$	199.9	0.0			Semiconductor	0.479	
$4NB(b)$ -chair- $4C_2(s)$	945.0	0.0			Semiconductor	0.289	
$4NB(c)$ -chair- $4C_2(b)$	2355.9	5.7	0.0	0.3	Metallicity/Half-metallicity		
$4NB(c)$ -boat- $4C_2(b)$	2754.9	6.1	0.0	0.1	Metallicity/Half-metallicity		
$4NB(c)$ -chair- $4C_2(c)$	922.4	6.4	1.4	0.0	Half-metallicity		
$4NB(c)$ -boat- $4C_2(c)$	1545.5	6.4	1.8	0.0	Half-metallicity		
$4NB(c)$ -chair- $4C_2(s)$	1575.2	3.8	0.2	0.0	Metallicity/Half-metallicity		
$4NB(s)$ -chair- $4C_2(c)$	1112.3	4.2	0.9	0.0	Metallicity/Half-metallicity		
$4NB(s)$ -chair- $4C_2(s)$	1661.8	9.4	0.9	0.0	Metallicity/Half-metallicity		
$4NB(s)$ -chair- $4C_2(b)$	2753.7	9.0	2.4	0.0	Half-metallicity		

Suc	$\Delta E ({ m meV})$			
System		NM	FM	AFM
<i>f</i> H-4-zBNNR	\sim	0.0		
fH-6-zBNNR	૾ૺૢૺૼૼૢ૾ૺૢ૽ૼૺૢ૾ૺ	0.0		

Table S3. The most favorable boat conformation and the corresponding nonmagentic (NM) ground state for the fully hydrogenated fH-4-zBNNR and fH-6-zBNNR systems.

Conformation	Ground State	Total Magnetic Moment(µB)
<i>f</i> H-8-zBNNR	FM/AFM	0.206/0.000
$6NB(b)$ -chair- $2C_2(c)$	AFM	0.000
$8BN(b)$ -chair- $8C_2(c)$	FM	0.256
$10BN(b)$ -chair- $10C_2(c)$	AFM	0.000
$6NB(b)$ -chair- $6C_2(c)$	FM	0.259
$8NB(b)$ -chair- $8C_2(c)$	FM	0.466
$10NB(b)$ -chair- $10C_2(c)$	AFM	0.168
<i>p</i> H-(BN) ₄ (C ₂) ₄ - <i>II</i> (2,0)	AFM	0.000
<i>p</i> H-(BN) ₄ (C ₂) ₄ - <i>II</i> (4,0)	AFM	0.000
<i>p</i> H-(BN) ₄ (C ₂) ₄ - <i>II</i> (4,2)	AFM	0.130
<i>p</i> H-(NB) ₄ (C ₂) ₄ - <i>II</i> (2,0)	AFM	0.000
<i>p</i> H-(NB) ₄ (C ₂) ₄ - <i>I</i> /(4,0)	AFM	0.208
<i>p</i> H-(NB) ₄ (C ₂) ₄ - <i>II</i> (4,2)	AFM	0.084
<i>p</i> H-(BN) ₄ (C ₂) ₄ - <i>I</i> II(1,1)	AFM	0.000
pH-(NB) ₄ (C ₂) ₄ - III (1,1)	AFM	0.000

Table S4. Total magnatic moment per supercell for the magnetic ground states of *f*H-8-zBNNR, as well as fully and partially hybrid hydrogenated zBNCNRs systems. FM and AFM represent the ferromagnetic and antiferromagnetic spin couplings, respectively.

Figure S4. The distribution of atomic magnetic moments M (μ B) in supercell for the magnetic ground states of *f*H-8-zBNNR and fully hydrogenated zBNCNRs systems.

Figure S5. The distribution of atomic magnetic moments M (μ B) in supercell for the magnetic ground states of partially hydrogenated zBNCNRs systems.