Negative photoconductivity of InAs nanowire

Yuxiang Han,^a Xiao Zheng,^a Mengqi Fu,^a Dong Pan,^b Xing Li,^a Yao Guo,^a Jianhua Zhao,^b Qing Chen^{a,*}

^aKey laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, People's Republic of China ^bState Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Supporting Information

Figure S1. Time-resolved photocurrent rise and decay curves as obtained by application and removal of 633nm light illumination at V_{ds} =0.1 V, V_{gs} =20 V under different light intensity varying from 9.37 x10⁻¹ mW•cm⁻² to 9.37 x10³ mW•cm⁻².

Figure S2. Photoelectrical response properties of InAs NW under 405 nm, 9.37 x10³ mW•cm⁻² light illumination at V_{ds} =0.1 V, V_{gs} =30 V in 1.3x10⁻³ Pa vacuum and (b) shows the fitting curve.

Figure S3. Logarithmic form of the I_d - V_g curves of the InAs NW FET under 488 nm light illumination.