Electronic Supplementary Information for:

Experimental and Computational Evaluation of the Barrier to Torsional Rotation in a Butadiyne-Linked Porphyrin Dimer

Martin D. Peeks, Patrik Neuhaus and Harry L. Anderson*

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK. E-mail: harry.anderson@chem.ox.ac.uk; Fax: +44 (0)1865 285002; Tel: +44 (0)1865 275704

Table of Contents

UV-Vis extinction coefficients and peak maxima of P2 in DCM/THF/pyridine $10/10/1$:S2
Figure S1: VT UV-Vis spectra of monomer P1 in DCM/THF/pyridine 10/10/1, (a) full spectrum in temperature range 298–77 K (b) expansion of Q-band region in temperature range 298–163 K S2
Figure S2: TD-DFT (B3LYP/6-31G*/LANL2DZ) calculated excitation energies and oscillator strengths for P2 (model 1d) as a function of inter-porphyrin torsion angle S2
Figure S3: Normal modes of S1 state of P2 (model 1e) associated with major vibronic bands (main text Figure 6)
Figure S4: Natural transition orbitals (NTOs) for S_0-S_1 transition calculated (TD-B3LYP/6-31G*) for model 1e. The eigenvalue associated with each NTO hole/electron pair is shown as λ S4
Figure S5: DFT (B3LYP/6-31G*/LANL2DZ) HOMO and LUMO for P2 (model 1d) as a function of interporphyrin torsion angle, 0–40° S5
Figure S6: DFT (B3LYP/6-31G*/LANL2DZ) HOMO and LUMO for P2 (model 1d) as a function of interporphyrin torsion angle, 50-90°S6
Figure S7: Absorption (blue) and fluorescence (green) of P2 (DCM + 1% pyridine). λ_{ex} = 450 nmS7
Figure S8: Absorption (blue) and fluorescence (green) of P2•T2 (DCM). $\lambda_{ex} = 450$ nm

Attached ZIP file: optimised coordinates and energies (B3LYP/6-31G*/LANL2DZ) for **P2** (model **1d**) at 2.5° increments of butadiyne torsion; ditto for perpendicular and planar diphenyldiacetylene (B3LYP/6-31G*), tolane (B3LYP/6-31G*) and P2 (model **1e**) (B3LYP/6-31G*). In addition, the optimised excited state geometry of **1e** (S₁ state, TD-B3LYP/6-31G*) and energy are given.

UV-Vis extinction coefficients and peak maxima of P2 in DCM/THF/pyridine 10/10/1:

λ_{max}(log₁₀ ε): 741 (5.072), 674 (4.891), 588 (4.338), 495 (5.291), 459 (5.592).

Figure S1: VT UV-Vis spectra of monomer **P1** in DCM/THF/pyridine 10/10/1, (a) full spectrum in temperature range 298–77 K (b) expansion of Q-band region in temperature range 298–163 K.

Figure S2: TD-DFT (B3LYP/6-31G*/LANL2DZ) calculated excitation energies and oscillator strengths for P2 (model 1d) as a function of inter-porphyrin torsion angle.

Mode 12: 75 cm⁻¹

ၟၜၛၟႜၯၟႜၜၜၜၛႜႍၜၜၜၛႜၜၜၜၛႜ

Mode 55: 391 cm⁻¹

Mode 179: 1345 cm⁻¹

Figure S3: Normal modes of S1 state of P2 (model 1e) associated with major vibronic bands (main text Figure 6).

Figure S4: Natural transition orbitals (NTOs) for S_0 - S_1 transition calculated (TD-B3LYP/6-31G*) for model 1e. The eigenvalue associated with each NTO hole/electron pair is shown as λ .

Figure S5: DFT (B3LYP/6-31G*/LANL2DZ) HOMO and LUMO for P2 (model 1d) as a function of interporphyrin torsion angle, 0–40°.

Figure S6: DFT (B3LYP/6-31G*/LANL2DZ) HOMO and LUMO for P2 (model 1d) as a function of interporphyrin torsion angle, 50–90°.

Figure S7: Absorption (blue) and fluorescence (green) of P2 (CHCl₃ + 1% pyridine). λ_{ex} = 450 nm.

Figure S8: Absorption (blue) and fluorescence (green) of **P2•T2** (CHCl₃). $\lambda_{ex} = 450$ nm. $\lambda_{max}(\log_{10} \epsilon)$: 749 (5.297), 682 (4.574), 588 (4.324), 498 (5.452), 434 (5.295).

The experimental ratio of extinction coefficients for planar and perpendicular conformers ($\varepsilon_{\parallel}/\varepsilon_{\perp}$) was estimated by comparing the absorption coefficients of free **P2** (in the presence of pyridine) and complexed **P2-T2** at 750 nm (planar, ε_{\parallel}) and 675 nm (perpendicular, ε_{\perp}), after subtraction of the vibronic contribution at 675 nm in free **P2**. The vibronic contribution in liquid solution at room temperature is given by the following equation, assuming that in **P2-T2**, there is no perpendicular **P2** (*i.e.*, all absorption at 675 nm arises from the vibronic contribution).

$$x_{vibr} = \frac{\varepsilon_{675 nm, T2}}{\varepsilon_{750 nm, T2}} = 0.171$$

Thus ε_{\perp} can be estimated by subtracting this vibronic contribution:

 ε_{\perp} , $_{py}=x_{vibr}\times\varepsilon_{675~nm,~py}=60960~{\rm M}^{-1}\,{\rm cm}^{-1}$

Where ε_{py} corresponds to spectra recorded in the presence of pyridine, and ε_{T2} to the complex **P2-T2**. Next we calculate and $\Delta \varepsilon_{\parallel}$. $\Delta \varepsilon_{\perp}$ was found in the previous step (60960 M⁻¹ cm⁻¹), assuming all of the perpendicular **P2** has been planarised.

 $\Delta \varepsilon_{\parallel} = \varepsilon_{750 \ nm, \ T2} - \varepsilon_{750 \ nm, \ py} = 103990 \ \mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

Thus:

 $\frac{\Delta \varepsilon_{\parallel}}{\Delta \varepsilon_{\perp}} = \frac{103990}{60960} = 1.7059$