SUPPORTING INFORMATION

"Doping" pentacene with sp²-Phosphorus Atoms: Towards High Performance Ambipolar Semiconductors

Guankui Long^{1,2#}, Xuan Yang², Wangqiao Chen¹, Mingtao Zhang³*, Yang Zhao¹*, Yongsheng Chen²*, and Qichun Zhang^{1,3}*

¹ School of Materials Science and Engineering, Nanyang Technological University, Singapore,
639798, Singapore

² State Key Laboratory and Institute of Elemento-Organic Chemistry, Synergetic Innovation of Chemical Science and Engineering (Tianjin), Center for Nanoscale Science and Technology,

College of Chemistry, Nankai University, Tianjin 300071, China

³ Computational Center for Molecular Science, College of Chemistry, Nankai University, Tianjin, 300071, China

⁴ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore

Table S1	Summary of the chemical structures and nomenclatures of the phosphapentacenes
	The optimized structures for pentacene and the phosphapentacene derivatives
Fig. S1	based on B3LYP/6-311+G** method.
Fig. S2	The optimized cationic structures for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.
Fig. S3	The optimized anionic structures for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.
Table S2	Summary of the p_z atomic orbital of the sp ² -phosphorus in the frontier molecular orbitals and natural bond orbital charge distributions of the phosphapentacenes.
Fig. S4	The contribution of p_z atomic orbital in the HOMO of pentacene.
Fig. S5	Correlations between HOMO energy levels of monophosphapentacene and diphosphapentacene derivatives with the percentage of p_z atomic orbital of the sp ² -phosphorus in the HOMO of the phosphapentacene derivatives.
Table S3.	Summary of the calculated results for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.
Fig. S6	Vertical $S_0 \rightarrow S_1$ gaps for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G ^{**} method.
Table S4.	Summary of the calculated hole and electron reorganization energies for the representative pentacene derivatives.
Fig. S7	Evolution of the calculated transfer integrals for hole and electron transfer in the dimer of pentacene and 6,13-diphosphapentacene as a function of the degree of translation of one molecule along the π - π stacking, long axis and short axis intermolecular distance.
Fig. S8	HOMO electron density distributions for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.
Fig. S9	LUMO electron density distributions for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.
Table S5.	Comparison of the hole and electron reorganization energies for pentacene and the phosphapentacene derivatives from adiabatic potential energy surface methods and normal mode analysis methods.
Table S6.	Summary of the calculated results for pentacene and the phosphapentacene derivatives based on B3LYP/6-31G* method.
Table S7.	Comparison of the calculated HOMO and LUMO energy levels based on different functional and basis sets.
Fig. S10	Singlet-triplet energy splitting for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.
Fig. S11	Vertical electron affinities for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.
Fig. S12	Vertical ionic potentials for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.
Fig. S13	Electron surface potentials for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.

Calculation Method

All the geometries of the ground states, radical cations, radical anions and triplet states were optimized by B3LYP functional and 6-31G* or 6-311+G** basis sets, and the frequency analysis was followed to assure that the optimized structures were stable states. Both basis sets give almost the same calculated reorganization energies and the same trend of HOMO and LUMO energy levels after introducing phosphorus atoms at different positions. In this work, we focused on discussing the calculation results by B3LYP/6-311+G** methods,^[1,2] and the calculated results by B3LYP/6-31G* are summarized in Table S6. TDDFT calculation for the $S_0 \rightarrow S_n$ transitions using B3LYP/6-311+G^{**} were then performed based on the optimized structures at ground states. The lowest 50 singlet roots of the nonhermitian eigenvalue equations were obtained to determine the vertical excitation energies. All the calculations were carried out using Gaussian 09 package.^[3] The normal-mode analysis and the Huang-Rhys factors, as well as the reorganization energies of normal modes for both neutral and charged molecules were obtained through the DUSHIN program developed by Reimers.^[4]

Table S1. Summary of the chemical structures and nomenclatures of the phosphapentacenes studied in this work, and pentacene is also shown for comparison.

Number	Nomenclature	Chemical structure
0	pentacene	
1	1-phosphapentacene	P
2	2-phosphapentacene	P
3	5-phosphapentacene	
4	6-phosphapentacene	
5	1,2-diphosphapentacene	P-P-
6	1,3-diphosphapentacene	P
7	1,4-diphosphapentacene	P
8	1,5-diphosphapentacene	P
9	1,6-diphosphapentacene	P
10	1,7-diphosphapentacene	P
11	1,8-diphosphapentacene	P
12	1,9-diphosphapentacene	

13	1,10-diphosphapentacene	P
14	1,11-diphosphapentacene	
15	1,12-diphosphapentacene	P
16	1,13-diphosphapentacene	P P
17	1,14-diphosphapentacene	
18	2,3-diphosphapentacene	P P
19	2,5-diphosphapentacene	P P P
20	2,6-diphosphapentacene	P p
21	2,7-diphosphapentacene	P
22	2,9-diphosphapentacene	P
23	2,10-diphosphapentacene	P
24	2,12-diphosphapentacene	P
25	2,13-diphosphapentacene	P P P
26	2,14-diphosphapentacene	P P
27	5,14-diphosphapentacene	P

28	6,13-diphosphapentacene	P P
29	5,6-diphosphapentacene	
30	5,7-diphosphapentacene	P P
31	5,13-diphosphapentacene	
32	5,12-diphosphapentacene	
33	5,7,12,14-	P P P
	tetraphosphapentacene	p p p
24	1,4,6,8,11,13-	
34	hexaphosphapentacene	P
35	1,4,5,6,7,8,11,12,13,14-	P P P P P P
55	decaphosphapentacene	p p p p p p

Fig. S1 The optimized structures for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.

Fig. S2 The optimized cationic structures for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.

Fig. S3 The optimized anonic structures for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.

Table S2. Summary of the p_z atomic orbital of the sp^2 -phosphorus in the frontier molecular orbitals (FMO) and natural bond orbital (NBO) charge distributions of the phosphapentacenes, and the calculated results for pentacene is also shown for comparison.

	index	HOMO/%	LUMO/%	Charge
	1	3	3	-0.165
	2	3	3	-0.210
	5	9	9	-0.178
	6	12	12	-0.218
P	1	6	10	0.6745
P	2	6	9	0.64546
P	5	17	19	0.67571
P	6	22	23	0.66942
P-P	1	5	15	0.3023
	2	5	13	0.2784
	1	4	12	0.7482
P	3	6	8	0.6847
P	1	6	15	0.7008
P	4	6	15	0.7008
	1	7	9	0.6750
P	5	17	19	0.6783
	1	5	8	0.6764
P	6	22	21	0.6732
	1	5	8	0.6764
	7	18	17	0.6758
	1	6	8	0.6743
	8	6	8	0.6743
P	1	16	5	0.6765
P	9	6	8	0.6518

P P	1	6	8	0.6772
	10	6	8	0.6486
P P	1	6	8	0.6777
	11	6	8	0.6777
P P	1	5	7	0.6786
	12	17	17	0.6816
	1	5	6	0.6830
	13	20	21	0.6732
	1	6	6	0.7097
	14	14	19	0.7313
P Y Y Y Y	2	5	7	0.3269
P A A A A A A A A A A A A A A A A A A A	3	5	7	0.3269
P	2	6	6	0.6568
P	5	15	19	0.6929
P	2	5	6	0.6518
P	6	21	21	0.6647
P	2	4	7	0.6524
P	7	17	16	0.6808
P Y Y Y Y	2	6	8	0.6519
Þ	9	6	8	0.6519
P P	2	5	7	0.6520
	10	5	7	0.6520
P P	2	5	8	0.6488
	12	18	17	0.6809
P P	2	6	9	0.6515
	13	22	22	0.6669
P P	2	6	11	0.6545
	14	17	21	0.6931
P Y Y Y Y	5	17	25	0.7082
	14	17	25	0.7082
	6	20	27	0.6691
	13	20	27	0.6691

	5	14	13	0.7198
	6	17	19	0.7087
P P	5	14	15	0.6763
	7	14	15	0.6763
P A A A A A A A A A A A A A A A A A A A	5	17	17	0.6663
P	13	21	21	0.6713
P A A A A A A A A A A A A A A A A A A A	5	16	16	0.6775
P	12	16	16	0.6775
P P	5	13	16	0.7048
	7	13	16	0.7048
P	12	13	16	0.7048
	14	13	16	0.7048
	1	5	5	0.7111
	4	5	5	0.7111
	6	17	23	0.7011
P P P	8	5	5	0.7111
	11	5	5	0.7111
	13	17	23	0.7011
	1	4	3	0.7400
	4	4	3	0.7400
	5	9	11	0.7951
	6	11	16	0.8036
	7	9	11	0.7951
[└] ₽ ^{··} ↓P ^{··} ↓P ^{··} ↓P ^{··}	8	4	3	0.7400
	11	4	3	0.7400
	12	9	11	0.7951
	13	11	16	0.8036
	14	9	11	0.7951

Fig. S4 The contribution of p_z atomic orbital in the HOMO of pentacene.

Fig. S5 Correlations between HOMO energy levels of monophosphapentacene (a) and diphosphapentacene derivatives (b) with the percentage of p_z atomic orbital of the sp²-phosphorus in the HOMO of the phosphapentacene derivatives.

Table S3. Summary of the calculated HOMO, LUMO levels, vertical ionic potentials (IPs), electron affinities (EAs), $S_0 \rightarrow S_1$ gaps, singlet-triplet energy splitting (ΔE_{S-T}), hole (λ_h) and electron (λ_e) reorganization energies for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.

	HOMO/eV	LUMO/eV	IP _v /eV	EA _v /eV	$S_0 \rightarrow S_1/eV$	ΔE _{S-} ⊤/eV	$\lambda_{\rm h}/{ m meV}$	$\lambda_{ m e}/ m meV$
pentacene	-4.94	-2.75	6.23	-1.47	1.90	0.78	95.25	134.11
1	-5.07	-2.95	6.34	-1.70	1.82	0.78	95.71	124.89
2	-5.11	-3.00	6.37	-1.75	1.82	0.76	92.59	118.61
3	-5.00	-2.99	6.28	-1.73	1.75	0.64	89.34	126.89
4	-4.97	-3.01	6.25	-1.74	1.73	0.56	83.86	129.98
5	-5.27	-3.20	6.52	-1.97	1.74	0.80	96.15	105.40
6	-5.23	-3.17	6.47	-1.95	1.73	0.76	96.42	114.37
7	-5.21	-3.16	6.46	-1.93	1.71	0.78	95.80	113.35
8	-5.13	-3.17	6.38	-1.93	1.69	0.64	91.35	120.84
9	-5.10	-3.18	6.35	-1.94	1.67	0.56	87.03	123.10
10	-5.13	-3.16	6.38	-1.93	1.70	0.64	90.26	119.38
11	-5.20	-3.13	6.45	-1.90	1.77	0.77	95.49	118.18
12	-5.24	-3.17	6.48	-1.95	1.77	0.76	93.83	112.25
13	-5.24	-3.17	6.48	-1.95	1.77	0.76	92.90	112.96
14	-5.21	-3.12	6.45	-1.90	1.78	0.77	96.44	117.74
15	-5.13	-3.16	6.39	-1.92	1.70	0.65	88.39	117.73
16	-5.10	-3.18	6.36	-1.93	1.68	0.56	83.48	121.49
17	-5.13	-3.14	6.38	-1.90	1.71	0.65	94.25	124.93
18	-5.27	-3.24	6.51	-2.03	1.70	0.71	86.28	114.75
19	-5.17	-3.21	6.42	-1.98	1.69	0.63	87.73	118.06
20	-5.13	-3.22	6.39	-1.98	1.67	0.55	80.44	116.75

21	-5.16	-3.20	6.41	-1.98	1.69	0.63	85.81	112.26
22	-5.27	-3.21	6.51	-2.01	1.76	0.74	90.06	106.85
23	-5.27	-3.21	6.51	-2.01	1.77	0.75	90.93	107.87
24	-5.16	-3.21	6.41	-1.98	1.69	0.63	87.14	114.79
25	-5.13	-3.23	6.38	-2.00	1.67	0.54	83.31	118.30
26	-5.16	-3.23	6.41	-1.99	1.67	0.62	88.62	111.97
27	-5.05	-3.26	6.32	-1.99	1.56	0.43	82.49	120.97
28	-5.00	-3.29	6.27	-2.01	1.53	0.31	69.80	128.20
29	-5.02	-3.16	6.28	-1.90	1.63	0.52	82.47	120.66
30	-5.07	-3.19	6.33	-1.94	1.62	0.58	83.45	114.55
31	-5.03	-3.22	6.29	-1.96	1.61	0.45	76.36	126.75
32	-5.06	-3.21	6.32	-1.96	1.62	0.55	82.85	122.34
33	-5.17	-3.58	6.40	-2.36	1.35	0.39	71.68	95.74
34	-5.47	-3.81	6.66	-2.63	1.42	0.39	75.97	98.37
35	-5.52	-4.05	6.66	-2.89	1.21	0.33	88.72	211.32

Fig. S6 Vertical $S_0 \rightarrow S_1$ gaps for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G^{**} method.

Structure	methods	$\lambda_{\rm h}/{\rm meV}$	$\lambda_{\rm e}/{ m meV}$	Refer
	B3LYP/6-		131	Houk, et al. <i>J.</i>
	311+G**//	02		Am. Chem. Soc.
	B3LYP/6-	92		2007 , <i>129</i> ,
	31G*			1805-1815
				Chao, et al.
	B3LYP/6-	0/	133	Chem. Eur. J.
	31G**	34	100	2007 , <i>13</i> , 4750-
				4758
				Wang, et al,
pentance	B3LYP/6-	108	129	Comput. Theor.
	31+G(d,p)	100	123	<i>Chem.</i> 2015 ,
				1057, 67-73
	B3LYP/6-		130	Han, et al. <i>J.</i>
	31++G**//	95		Comput. Chem.
	B3LYP/6-			2011 , <i>3</i> 2, 3218-
	31G**			3225
	B3LYP/6- 311+G**	95.25	134.11	This work
P P				
P	311+G**	69.80	128.20	This work
P L L P	B3LYP/6- 311+G**	90.06	106.85	This work
	B3LYP/6- 311+G**	71.68	95.74	This work
	B3LYP/6-	75.97	98.37	This work
	311+G""			
	B3LYP/6-	114	150	Houk, et al. <i>J.</i>
N N N N	311+G**//	114		Am. Chem. Soc.

Table S4. Summary of the calculated hole and electron reorganization energies for the representative pentacene derivatives.

	B3LYP/6-			2007 , <i>129</i> ,
	31G*			1805-1815
				Chao, et al.,
	B3LYP/6-	444	1.40	ChemPhysChem
	31G**	114	149	2006 , 7, 2003-
				2007
	B3LYP/6-			Houk, et al. J.
	311+G**//	100	105	Am. Chem. Soc.
	B3LYP/6-	128	601	2007 , <i>129</i> ,
	31G*			1805-1815
				Chao, et al.,
	B3LYP/6-	126	162	ChemPhysChem
	31G**	120	102	2006 , <i>7</i> , 2003-
				2007
	B3LYP/6-			Houk, et al. J.
	311+G**//	240	204	Am. Chem. Soc.
	B3LYP/6-	340	204	2007 , <i>129</i> ,
	31G*			1805-1815
^V N ^V N ^V N ^V N ^V N ^V				Chao, et al.,
	B3LYP/6-	354	201	ChemPhysChem
	31G**	554	201	2006 , 7, 2003-
				2007
	B3LYP/6-			Houk, et al. <i>J.</i>
	311+G**//	_	178	Am. Chem. Soc.
	B3LYP/6-	-	170	2007 , <i>129</i> ,
	31G*			1805-1815
N N N N	B3LYP/6-			Houk, et al. <i>J.</i>
	311+G**//	_	107	Am. Chem. Soc.
	B3LYP/6-	-	131	2007 , <i>129</i> ,
	31G*			1805-1815

				Chao, et al.,
	B3LYP/6-	100	167	ChemPhysChem
	31G**	120		2006 , <i>7</i> , 2003-
5N-PENT-3				2007
				Chao, et al.,
Ň Ň Ň Ň	B3LYP/6-	121	157	ChemPhysChem
	31G**	131	157	2006 , 7, 2003-
SIN-PEINT-4				2007
	B3LYP/6-			Houk, et al. J.
	311+G**//		122	Am. Chem. Soc.
N N N	B3LYP/6-	-	132	2007 , <i>129</i> ,
	31G*			1805-1815
	B3LYP/6-			Houk, et al. J.
NC N N CN	311+G**//		124	Am. Chem. Soc.
	B3LYP/6-	-	134	2007 , <i>129</i> ,
	31G*			1805-1815
	B3LYP/6-		138	Houk, et al. J.
	311+G**//			Am. Chem. Soc.
NC N N N CN	B3LYP/6-	-		2007 , <i>129</i> ,
	31G*			1805-1815
	B3LYP/6-			Houk, et al. J.
NC CN	311+G**//		405	Am. Chem. Soc.
	B3LYP/6-	-	135	2007 , <i>129</i> ,
	31G*			1805-1815
	B3LYP/6-			Houk, et al. J.
CN CN	311+G**//		1.40	Am. Chem. Soc.
NC	B3LYP/6-	-	149	2007 , <i>129</i> ,
	31G*			1805-1815
	B3LYP/6-			Houk, et al. J.
	311+G**//	-	160	Am. Chem. Soc.
	B3LYP/6-			2007 , <i>129</i> ,

	31G*			1805-1815
N	B3LYP/6-			Ren, et al. <i>J.</i>
	31++G**//	80	150	Phys. Chem. C
	B3LYP/6-			2011 , <i>115</i> ,
	31G**			21416-21428
CINCI				Chao, et al.,
	B3LYP/6-	113	154	ChemPhysChem
	31G**	110	10-1	2006 , <i>7</i> , 2003-
4GIZIN-PEINT				2007
	B3LYP/6-			Ren, et al. <i>J.</i>
	31++G**//			Phys. Chem. C
	B3LYP/6-	370	130	2011 , <i>115</i> ,
6.12	31G**			21416-21428
0-12				
N N N	B3LYP/6-			Ren, et al. <i>J.</i>
	31++G**//	390	150	Phys. Chem. C
	B3LYP/6-	000	100	2011 , <i>115</i> ,
6-13	31G**			21416-21428
				Chao, et al.,
	B3LYP/6-			ChemPhysChem
F	31G**	162	188	2006 , <i>7</i> , 2003-
				2007
FF				Wang, et al,
	B3LYP/6-	195	215	Comput. Theor.
	31+G(d,p)	100	210	<i>Chem.</i> 2015 ,
8F-PENT				1057, 67-73
	B3LYP/6-	232	236	Wang, et al,

	31+G(d,p)			Comput. Theor.
				Chem. 2015 ,
				<i>1057</i> , 67-73
				Chao, et al.,
	B3LYP/6-	222	225	ChemPhysChem
F	31G**	222	225	2006 , <i>7</i> , 2003-
				2007
PF-PENI				Chao, et al.
	B3LYP/6-	222	225	Chem. Eur. J.
	31G**	222	225	2007 , <i>13</i> , 4750-
				4758
	B3LYP/6-			Han, et al <i>. J.</i>
	31++G**	226	229	Comput. Chem.
	//B3LYP/6-			2011 , <i>3</i> 2, 3218-
	31G**			3225
				Wang, et al,
	B3LYP/6-	100	4 4 4	Comput. Theor.
	31+G(d,p)	108	141	Chem. 2015 ,
DCP				1057, 67-73
				Wang, et al,
	B3LYP/6-	105	120	Comput. Theor.
	31+G(d,p)	105	129	Chem. 2015 ,
2CI-PENT				1057, 67-73
CI				Wang, et al,
	B3LYP/6-	117	1/3	Comput. Theor.
	31+G(d,p)		1-10	<i>Chem.</i> 2015 ,
401-PEN1-1				1057, 67-73

$ \begin{array}{c} CI \\ Cl $	B3LYP/6- 31+G(d,p)	119	148	Wang, et al, Comput. Theor. Chem. 2015 , 1057, 67-73
$\begin{array}{c c} CI & CI \\ \hline \\ \hline \\ \hline \\ \\ CI & CI \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	B3LYP/6- 31+G(d,p)	124	148	Wang, et al, Comput. Theor. Chem. 2015 , 1057, 67-73
CI CI CI CI CI CI CI CI	B3LYP/6- 31+G(d,p)	130	152	Wang, et al, Comput. Theor. Chem. 2015 , 1057, 67-73
$\begin{array}{c c} CI & CI \\ \hline \\ \hline \\ \hline \\ CI \\ CI \\ \hline \\ $	B3LYP/6- 31+G(d,p)	132	152	Wang, et al, Comput. Theor. Chem. 2015 , 1057, 67-73
$CI \qquad CI \qquad$	B3LYP/6- 31G**	132	151	Chao, et al., <i>ChemPhysChem</i> 2006 , <i>7</i> , 2003- 2007
	B3LYP/6- 31+G(d,p)	140	155	Wang, et al, Comput. Theor. Chem. 2015 , 1057, 67-73

CI C	B3LYP/6- 31G**	144	159	Chao, et al., <i>ChemPhysChem</i> 2006 , 7, 2003- 2007
CI C	B3LYP/6- 31G**	143	160	Chao, et al., <i>ChemPhysChem</i> 2006 , <i>7</i> , 2003- 2007
CI C	B3LYP/6- 31G**	168	154	Chao, et al., <i>ChemPhysChem</i> 2006 , 7, 2003- 2007
CN CN 2CN-PENT-1	B3LYP/6- 31G**	71	135	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
CN CN CN 2CN-PENT-2	B3LYP/6- 31G**	93	117	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
$\begin{array}{ccc} CN & CN \\ \hline \\ \hline \\ CN & CN \\ \hline \\ CN & CN \\ \hline \\ $	B3LYP/6- 31G**	69	126	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
NC NC NC 4CN-PENT-2	B3LYP/6- 31G**	90	103	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750-

				4758
CN CN CN CN CN 4CN-PENT-3	B3LYP/6- 31G**	72	119	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B3LYP/6- 31G**	78	122	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
CN NC NC CN CN CN CN CN CN CN CN CN CN C	B3LYP/6- 31G**	70	105	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
$\begin{array}{c c} CN & CN \\ \hline \\ CN & CN \\ \hline \\ CN & CN \\ \hline \\ $	B3LYP/6- 31G**	71	109	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
$ \begin{array}{cccccc} & CN & CN \\ & NC & \downarrow & \downarrow & \downarrow & CN \\ & NC & \downarrow & \downarrow & \downarrow & \downarrow & CN \\ & NC & \downarrow & \downarrow & \downarrow & \downarrow & CN \\ & CN & CN & CN \\ & 8CN-PENT \end{array} $	B3LYP/6- 31G**	70	95	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B3LYP/6- 31G**	75	87	Chao, et al. <i>Chem. Eur. J.</i> 2007 , <i>13</i> , 4750- 4758
	B3LYP/6- 31G**	144	203	Chao, et al. <i>Chem. Eur. J.</i>

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					2007 , <i>13</i> , 4750-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TIPS				4758
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Kuo, et al, Phys.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		B3LYP/6-	4 4 4	202	Chem. Chem.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		31G**	144	203	Phys., 2011 , 13,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					11148-11155
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TIPS	B3LYP/6-			Ren, et al. <i>J.</i>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T-PENT	31++G**//	100	100	Phys. Chem. C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		B3LYP/6-	130	190	2011 , <i>115</i> ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		31G**			21416-21428
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		B3LYP/6-			Ren, et al. <i>J.</i>
TIPS B3LYP/6- 31G** 210 2011, 115, 21416-21428 N N N Starten of the second sec		31++G**//	210	210	Phys. Chem. C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TIPS	B3LYP/6-	210		2011 , <i>115</i> ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		31G**			21416-21428
N N N N N B3LYP/6- 31G** 211 204 Chem. Chem. Phys., 2011, 13, 11148-11155 TIPS B3LYP/6- 31+G** 205.9 195.1 Shuai, et al, J. Mater. Chem., 2012, 22, 18181 TIPS B3LYP/6- 31++G**// N 170 200 Ren, et al. J. Phys. Chem. C Shuai, et al, J. 31++G**// B3LYP/6- 31G** 170 200 Ren, et al. J. N B3LYP/6- 31G** 170 200 Shuai, et al, J. Shuai, et al, J. Shuai, et al, J. Shuai, et al, J. Shuai, et al, J. 31G** 170 200 Shuai, et al, J. B3LYP/6- 31.0** 164.4 192.8 Shuai, et al, J.					Kuo, et al, <i>Phys.</i>
31G** 211 204 Phys., 2011, 13, 11148-11155 TIPS B3LYP/6- 31+G** 205.9 195.1 Shuai, et al, J. Mater. Chem., 2012, 22, 18181 SB3LYP/6- 31+G** 170 200 Ren, et al. J. Phys. Chem. C 2011, 115, 21416-21428 2011, 115, 21416-21428 TIPS B3LYP/6- 31G** 164.4 192.8 Shuai, et al, J.		B3LYP/6-	211	204	Chem. Chem.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		31G**	211		Phys., 2011 , 13,
HIPS B3LYP/6- 31+G** 205.9 195.1 Shuai, et al, J. TIPS B3LYP/6- 31++G**// 205.9 195.1 Mater. Chem., TIPS B3LYP/6- 31++G**// 170 200 Ren, et al. J. V N 31++G**// 170 200 2011, 115, Shuai, et al, J. 31G** 164.4 192.8 Shuai, et al, J.					11148-11155
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TIPS	B3I VD/6		195.1	Shuai, et al, <i>J.</i>
TIPS B3LYP/6- 31++G**// 170 200 Ren, et al. J. Phys. Chem. C 2011, 115, 21416-21428 B3LYP/6- TIPS B3LYP/6- 170 200 Shuai, et al, J. Phys. Chem. C 2011, 115, 21416-21428 B3LYP/6- 164.4 192.8 Mater. Chem.,		21.0**	205.9		Mater. Chem.,
TIPS B3LYP/6- 31++G**// Ren, et al. J. N 31++G**// 170 200 Ren, et al. J. N B3LYP/6- 31G** 170 200 2011, 115, 21416-21428 B3LYP/6- TIPS B3LYP/6- 24+C** 164.4 192.8 Shuai, et al, J.		51+0			2012 , 22, 18181
N 31++G**// 170 200 Phys. Chem. C B3LYP/6- 31G** 170 200 2011, 115, Shuai, et al, J. B3LYP/6- 164.4 192.8 Shuai, et al, J.	TIPS	B3LYP/6-			Ren, et al. <i>J.</i>
N B3LYP/6- 31G** 110 200 2011, 115, 21416-21428 B3LYP/6- TIPS B3LYP/6- 24 + C** Shuai, et al, J.		31++G**//	170	200	Phys. Chem. C
31G** 21416-21428 B3LYP/6- Shuai, et al, J. TIPS 21416-21428		B3LYP/6-	170	200	2011 , <i>115</i> ,
B3LYP/6- TIPSB3LYP/6- 164.4Shuai, et al, J.Mater. Chem.,		31G**			21416-21428
TIPS DSLTF/0- 164.4 192.8 Mater. Chem.,					Shuai, et al, <i>J.</i>
	TIPS	B3LYP/6-	164.4	64.4 192.8	Mater. Chem.,
3 -6 2012 , 22, 18181	3-6	5170			2012 , <i>2</i> 2, 18181
	TIPS N TIPS TIPS	B3LYP/6- 31++G**// B3LYP/6- 31G** B3LYP/6- 31+G**	170	200	2012, 22, 1818 Ren, et al. J. Phys. Chem. 2011, 115, 21416-21428 Shuai, et al, J. Mater. Chem.
		1		1	1

	B3LYP/6- 31G**	161	192	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>1</i> 3, 11148-11155
TIPS-N2PENT				
	B3LYP/6- 31G**	171	204	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
TIPS-F4N1PENT				
TIPS N N N N F F TIPS TIPS-F2N4PENT	B3LYP/6- 31G**	227	223	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
TIPS F N N TIPS TIPS-F2N4PENT-2	B3LYP/6- 31G**	230	223	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155

	B3LYP/6- 31G**	217	204	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
CI N N TIPS CI N CI N CI N CI N CI TIPS CI TIPS TIPS TIPS-CI2N4PENT-2	B3LYP/6- 31G**	223	211	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
TIPS F F F F F TIPS TIPS-F4N4PENT	B3LYP/6- 31G**	225	223	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
$F \rightarrow N \rightarrow F$	B3LYP/6- 31G**	237	239	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>1</i> 3, 11148-11155

$ \begin{array}{c c} & \text{TIPS} \\ & \text{F} \\ & \text{TIPS} \\ & \text{TIPS-F4N4PENT-3} \\ \end{array} $	B3LYP/6- 31G**	210	212	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
$ \begin{array}{c} $	B3LYP/6- 31G**	215	200	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
CI CI CI CI N N CI N CI CI N CI CI CI TIPS CI TIPS TIPS TIPS TIPS-CI4N4PENT-2	B3LYP/6- 31G**	221	201	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
$ \begin{array}{c c} & \text{TIPS} \\ & \text{CI} \\ & \text{TIPS} \\ & \text{TIPS-CI4N4PENT-3} \\ \end{array} $	B3LYP/6- 31G**	208	202	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155

T ID 2				
$F \rightarrow F \rightarrow$	B3LYP/6- 31G**	229	235	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
$ \begin{array}{c c} & \text{TIPS} \\ & \text{CI} \\ & \text{TIPS} \\ & \text{TIPS} \\ & \text{TIPS-CI8N4PENT} \\ \end{array} $	B3LYP/6- 31G**	210	192	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
TIPS H N H TIPS TIPS-DHDAP-2p	B3LYP/6- 31+G**	198.6	389.6	Shuai, et al, <i>J.</i> <i>Mater. Chem.</i> , 2012 , 22, 18181
TIPS H N N N TIPS TIPS TIPS-DHTAP-2p	B3LYP/6- 31+G**	197.7	330.7	Shuai, et al, <i>J.</i> <i>Mater. Chem.</i> , 2012 , 22, 18181
	B3LYP/6-	139	163	Kuo, et al, <i>Phys.</i>

TIPS	31G**			Chem. Chem.
				Phys., 2011 , 13,
CN				11148-11155
CN				Chao, et al.
	B3LYP/6-	400	100	Chem. Eur. J.
TIPS	31G**	139	163	2007 , <i>13</i> , 4750-
TIPS-CN2PENT				4758
				Chao, et al.
	B3LYP/6-	138	130	Chem. Eur. J.
	31G**	100	139	2007 , <i>13</i> , 4750-
NC CN				4758
NC	B3LYP/6-			Han, et al <i>. J.</i>
	31++G**//	126	126	Comput. Chem.
TIPS	B3LYP/6-	130	130	2011 , <i>3</i> 2, 3218-
	31G**			3225
	B3LYP/6- 31G**	138	139	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
F F F F F TIPS TIPS-F4PENT	B3LYP/6- 31G**	158	207	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155

TIPS	B3LYP/6-			Han, et al <i>. J.</i>
_ _	31++G**//	470	040	Comput. Chem.
	B3LYP/6-	178	212	2011 , <i>3</i> 2, 3218-
	31G**			3225
				Kuo, et al, <i>Phys.</i>
	B3LYP/6-	170	216	Chem. Chem.
TIPS	31G**	178	210	Phys., 2011 , 13,
TIPS-PENTF ₈				11148-11155
CI CI CI CI CI CI CI CI CI TIPS TIPS TIPS-CI4PENT	B3LYP/6- 31G**	148	184	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
TIPS	B3LYP/6-			Han, et al <i>. J.</i>
	31++G**//	100	182	Comput. Chem.
Br	B3LYP/6-	130		2011 , <i>3</i> 2, 3218-
Br	31G**			3225
TIPS TIPS-PENTBr ₂	B3LYP/6- 31G**	139	186	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>1</i> 3, 11148-11155
TIPS	B3LYP/6-			Han, et al <i>. J.</i>
	31++G**//	138	173	Comput. Chem.
Br Br Br	B3LYP/6-	100		2011 , <i>3</i> 2, 3218-
	31G**			3225
	B3I YP/6-			Kuo, et al, Phys.
	31G**	140	40 175	Chem. Chem.
TIPS				Phys., 2011 , 13,

TIPS-PENTBr ₄				11148-11155
TIPS	B3LYP/6- 31G**	143	217	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
TIPS S F TIPS TIPS-F1T <i>b</i> TH	B3LYP/6- 31G**	154	226	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
F F F F F F F F F F	B3LYP/6- 31G**	161	225	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
	B3LYP/6- 31++G**// B3LYP/6- 31G**	147	195	Han, et al. <i>J.</i> <i>Comput. Chem.</i> 2011 , 32, 3218- 3225
	B3LYP/6- 31G**	152	198	Kuo, et al, Phys. Chem. Chem.

				Phys., 2011 , 13,
				11148-11155
F F F F F F F F F F F F F F F F F F F	B3LYP/6- 31G**	176	234	Kuo, et al, <i>Phys.</i> <i>Chem. Chem.</i> <i>Phys.</i> , 2011 , <i>13</i> , 11148-11155
IN CONTRACTOR	B3LYP/6- 31G(d)	168	214	Zhang, et al, <i>Asian J. Org.</i> <i>Chem.</i> 2013 , <i>2</i> , 852-856
	B3LYP/6- 31G(d)	170	221	Zhang, et al, <i>Asian J. Org.</i> <i>Chem.</i> 2013 , <i>2</i> , 852-856
	B3LYP/6- 31G(d)	173	170	Zhang, et al, <i>Asian J. Org.</i> <i>Chem.</i> 2013 , <i>2</i> , 852-856
	B3LYP/6- 31G(d)	102	117	Zhang, et al, <i>Asian J. Org.</i> <i>Chem.</i> 2013 , 2, 852-856
	B3LYP/6- 31G(d)	123	121	Zhang, et al, <i>Asian J. Org.</i> <i>Chem.</i> 2013 , 2, 852-856

	B3LYP/6- 31G(d)	169	195	Zhang, et al,
				Asian J. Org.
				Chem. 2013 , 2,
				852-856
S-				Zhang, et al,
	B3LYP/6- 31G(d)	197	191	Asian J. Org.
				Chem. 2013 , 2,
				852-856

Fig. S7 Evolution of the calculated transfer integrals for hole (a, c, e) and electron transfer (b, d, f) in the dimer of pentacene and 6,13-diphosphapentacene as a function of the degree of translation of one molecule along the π - π stacking (a, b), long axis (c, d) and short axis (e, f) intermolecular distance. The inset in (a) shows the π - π stacking direction, the long axis (c) and short axis direction (e) is fixed with π - π stacking distance of 3.4 Å during calculating the transfer integrals.

Fig. S8 HOMO electron density distributions for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G^{**} method. Red and green surfaces represent positive and negative phase, drawn as isosurface of 0.02 au, respectively.

Fig. S9 LUMO electron density distributions for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G^{**} method. Red and green surfaces represent positive and negative phase, drawn as isosurface of 0.02 au, respectively.

Table S5. Comparison of the hole (λ_h) and electron (λ_e) reorganization energies for pentacene and the phosphapentacene derivatives from adiabatic potential (AP) energy surface methods and normal mode (NM) analysis methods (B3LYP/6-311+G^{**}).

	A	Р	NM			
	$\lambda_{ m h}/ m meV$	$\lambda_{ m e}/ m meV$	$\lambda_{\rm h}/{\rm meV}$	$\lambda_{ m e}/ m meV$		
pentacene	95.25	134.11	94.97	133.77		
1	95.71	124.89	95.34	124.60		
2	92.59	118.61	92.24	118.40		
3	89.34	126.89	89.02	126.83		
4	83.86	129.98	83.56	129.81		
5	96.15	105.40	95.59	105.01		
6	96.42	114.37	96.21	114.43		
7	95.80	113.35	95.34	112.95		
8	91.35	120.84	90.75	120.51		
9	87.03	123.10	86.54	122.86		
10	90.26	119.38	89.89	119.14		
11	95.49	118.18	95.09	117.91		
12	93.83	112.25	93.36	111.83		
13	92.90	112.96	92.49	112.82		
14	96.44	117.74	96.08	117.53		
15	88.39	117.73	87.90	117.53		
16	83.48	121.49	83.07	121.13		
17	94.25	124.93	93.36	124.72		
18	86.28	114.75	86.17	114.43		
19	87.73	118.06	87.28	117.91		

20	80.44	116.75	79.97	116.42
21	85.81	112.26	85.42	111.95
22	90.06	106.85	89.64	106.50
23	90.93	107.87	90.51	107.61
24	87.14	114.79	86.66	114.56
25	83.31	118.30	82.82	118.03
26	88.62	111.97	88.15	111.83
27	82.49	120.97	81.83	120.63
28	69.80	128.20	69.18	127.95
29	82.47	120.66	81.95	120.26
30	83.45	114.55	83.07	114.31
31	76.36	126.75	75.75	126.58
32	82.85	122.34	82.32	122.12
33	71.68	95.74	70.67	95.34
34	75.97	98.37	75.26	97.94
35	88.72	211.32	89.64	257.63
	1			

Table S6. Summary of the calculated HOMO, LUMO levels, vertical ionic potentials (IPs), electron affinities (EAs), $S_0 \rightarrow S_1$ gaps, singlet-triplet energy splitting (ΔE_{S-T}), hole (λ_h) and electron (λ_e) reorganization energies for pentacene and the phosphapentacene derivatives based on B3LYP/6-31G* method.

	HOMO/eV	LUMO/eV	IP _v /eV	EA _v /eV	$S_0 \rightarrow S_1/eV^a$	ΔE _{S-} τ/eV	$\lambda_{ m h}/ m meV$	$\lambda_{ m e}/ m meV$
pentacene	-4.60	-2.39	5.93	-1.06	2.31	0.78	91.71	131.30
1	-4.89	-2.81	6.06	-1.32	2.24	0.77	92.92	122.48
2	-4.80	-2.67	6.10	-1.38	2.24	0.76	90.63	117.65
3	-4.69	-2.67	6.01	-1.35	2.11	0.64	86.97	126.60
4	-4.66	-2.69	5.98	-1.36	2.06	0.56	81.63	129.18
5	-4.97	-2.91	6.26	-1.63	2.19	0.79	94.60	101.83
6	-4.89	-2.87	6.21	-1.60	2.17	0.75	93.34	114.66
7	-4.83	-2.87	6.18	-1.58	2.14	0.76	92.63	111.64
8	-4.81	-2.89	6.13	-1.58	2.05	0.63	87.40	119.57
9	-4.83	-2.86	6.10	-1.59	2.02	0.55	83.48	121.76
10	-4.94	-2.86	6.12	-1.58	2.08	0.64	86.58	118.18
11	-4.89	-2.81	6.18	-1.54	2.20	0.76	91.68	115.63
12	-4.94	-2.86	6.22	-1.60	2.20	0.75	90.61	111.10
13	-4.90	-2.81	6.22	-1.60	2.20	0.75	89.70	111.53
14	-4.81	-2.88	6.18	-1.54	2.21	0.76	93.06	115.49
15	-4.84	-2.86	6.13	-1.57	2.09	0.64	84.32	116.75
16	-4.83	-2.84	6.11	-1.59	2.03	0.56	80.12	120.22
17	-4.99	-2.95	6.12	-1.54	2.08	0.64	90.85	123.69
18	-4.93	-2.87	6.26	-1.68	2.13	0.71	85.27	112.40
19	-4.88	-2.92	6.17	-1.63	2.06	0.62	84.53	118.30
20	-4.86	-2.93	6.15	-1.64	2.02	0.55	77.54	116.53

21	-4.88	-2.90	6.17	-1.63	2.08	0.63	82.65	112.56
22	-4.99	-2.92	6.26	-1.66	2.19	0.74	87.34	105.76
23	-4.99	-2.91	6.26	-1.66	2.20	0.74	88.05	107.29
24	-4.88	-2.91	6.16	-1.64	2.07	0.63	83.70	114.50
25	-4.85	-2.94	6.14	-1.66	2.01	0.54	80.16	117.71
26	-4.88	-2.94	6.16	-1.66	2.04	0.61	85.90	111.15
27	-4.77	-2.98	6.07	-1.66	1.86	0.42	79.74	122.75
28	-4.72	-3.02	6.03	-1.68	1.77	0.30	67.43	129.69
29	-4.74	-2.87	6.04	-1.56	1.94	0.52	79.57	120.72
30	-4.78	-2.89	6.08	-1.60	1.98	0.58	80.23	145.31
31	-4.75	-2.93	6.05	-1.62	1.90	0.46	72.74	126.36
32	-4.78	-2.91	6.07	-1.61	1.97	0.55	78.90	122.14
33	-4.92	-3.35	6.19	-2.08	1.65	0.37	67.30	95.13
34	-5.23	-3.59	6.46	-2.37	1.75	0.36	71.23	96.08
35	-5.33	-3.87	6.50	-2.69	1.50	0.32	79.13	176.23

^a Time-dependent DFT (TDDFT) calculation for the $S_0 \rightarrow S_n$ transitions using CAM-B3LYP/6-31G* were performed based on the optimized structures at ground states (B3LYP/6-31G*). The lowest 50 singlet roots of the nonhermitian eigenvalue equations were obtained to determine the vertical excitation energies.

Table S7. Comparison of the calculated HOMO and LUMO energy levels based on different functional and basis sets.

Pentacene	HOMO/eV	Relative error/%	LUMO/eV	Relative error/%	E _g /eV	Relative error/%
Experiment ^a	-4.91		-3.00		1.91	
B3LYP/6- 31G*	-4.60	-6.31	-2.39	-20.33	2.21	15.71
B3LYP/6- 311+G**	-4.94	0.65	-2.75	-8.33	2.19	14.66
CAM- B3LYP/6- 311+G*	-6.04	22.85	-1.70	-43.19	4.33	126.94
M06-2X/6- 311+G**	-5.96	17.44	-2.04	-32.08	3.93	105.54
wB97XD/6- 311+G**	-6.57	27.89	-1.14	-62.02	5.43	184.51

^a The experimental data for pentacene is adapted from Seongil Im *et al.* (*Adv. Funct. Mater.* **2014**, *24*, 1109-1116).

Singlet-triplet energy splitting for phosphapentacene derivatives

In order to investigate the stabilities of these phosphapentacene derivatives, the singlettriplet energy splitting (ΔE_{S-T}) are then calculated (Fig. S9). The ΔE_{S-T} decreases pentacene significantly from 0.78 eV for to 0.39 eV for 5,7,12,14tetraphosphapentacene (33) and 1,4,6,8,11,13-hexaphosphapentacene (34), and even 0.31 eV for 6,13-diphosphapentacene (28). While 1,4-diphosphapentacene (7) shows a slightly increased ΔE_{S-T} of 0.80 eV, and others mainly exhibit decreased value for ΔE_{S-T} . Although the values of ΔE_{S-T} are decreased with different numbers and positions of phosphorus atoms, however, these values are still higher than the benchmark for the open-shell singlet diradicals,^[5] further indicating that these phosphapentacenes still exhibit the close-shell singlet ground states.

Fig. S10 Singlet-triplet energy splitting (ΔE_{S-T}) for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G^{**} method.

Fig. S11 Vertical electron affinities (EAs) for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.

Fig. S12 Vertical ionic potentials (IPs) for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.

.

Fig. S13 Electron surface potentials (ESPs) for pentacene and the phosphapentacene derivatives based on B3LYP/6-311+G** method.

Pentacene

3.040e-2

1,2-diphosphapentacene

5.594e-2

1,3-diphosphapentacene

-3.373e-2

3.373e-2

1,4-diphosphapentacene

1,5-diphosphapentacene

3.221e-2

1,6-diphosphapentacene

-5.645e-2

5.645e-2

1,7-diphosphapentacene

5.773e-2

1,8-diphosphapentacene

1,9-diphosphapentacene

1,10-diphosphapentacene

1,11-diphosphapentacene

1,12-diphosphapentacene

3.425e-2

1,13-diphosphapentacene

1,14-diphosphapentacene

-3.430e-2

3.430e-2

2,3-diphosphapentacene

5.439e-2

2,5-diphosphapentacene

3.473e-2

2,6-diphosphapentacene

3.542e-2

2,7-diphosphapentacene

2,9-diphosphapentacene

2,10-diphosphapentacene

2,12-diphosphapentacene

2,13-diphosphapentacene

2,14-diphosphapentacene

3.557e-2
5,14-diphosphapentacene

6,13-diphosphapentacene

5,6-diphosphapentacene

5,7-diphosphapentacene

5,13-diphosphapentacene

5,12-diphosphapentacene

5.342e-2

5,7,12,14-tetraphosphapentacene

1,4,6,8,11,13-hexaphosphapentacene

3.230e-2

1,4,5,6,7,8,11,12,13,14-decaphosphapentacene

5.428e-2

Reference List

[1] A. Becke. J. Chem. Phys. 1993, 98, 5648.

[2] C. Lee, W. Yang, R. G. Parr. Phys. Rev. B 1988, 37, 785-789.

[3] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[4] J. R. Reimers. J. Chem. Phys. 2001, 115, 9103-9109.

[5] M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, F. Wudl. *J. Am. Chem. Soc.* **2004**, *126*, 7416-7417.