Supporting Information

Synthesis of hollow cobalt oxide nanopowders by salt-assisted spray pyrolysis process applying nanoscale Kirkendall diffusion and their electrochemical properties

Hyeon Seok Ju^a, Jung Sang Cho^a, Jong Hwa Kim^b, Yun Ju Choi^c,

and Yun Chan Kang^{a,*}

^aDepartment of Materials Science and Engineering, Korea University, Anam-Dong,

Seongbuk-Gu, Seoul 136-713, Republic of Korea

^bDaegu Center, Korea Basic Science Institute, 80 Daehakro Bukgu, Daegu 702-701,

Republic of Korea

^cSuncheon Center, Korea Basic Science Institute, Suncheon 540-742, Republic of Korea E-mail: yckang@korea.ac.kr

Figure S1. Schematic diagram of the ultrasonic spray pyrolysis system.

Figure S2. Morphologies of the nanopowders obtained by post-treatment of the metallic Co nanopowder under air atmosphere at a temperature of 300 °C: (a) SEM image, (b) and (c) TEM images, and (d) high resolution TEM image.

Figure S3. XRD patterns of the powders obtained after post-treatment for different oxidation time of the metallic Co nanopowders under air atmosphere at a temperature of 500 °C.

Figure S4. TEM image of the powder obtained after post-treatment for 10 min of the metallic Co nanopowders under air atmosphere at a temperature of 500 °C.

Figure S5. N_2 adsorption and desorption isotherms and BJH pore size distributions of the hollow and filled Co_3O_4 nanopowders.

Materials	Voltage range (V)	Current rate	Initial C _{dis} /C _{cha} [mA h g ⁻¹]	Discharge capacity [mA h g ⁻¹]	Cycle number	Ref
Co ₃ O ₄ hollow nanopowders	0.001-3	1000 mA g ⁻¹	1182/882	775	150	In this work
Co ₃ O ₄ nanoparticle	0.01-3	178 mA g ⁻¹	1237/835	~150	100	[40]
Co ₃ O ₄ nanowire	0.01-3	110 mA g ⁻¹	1027/755	611	50	[41]
Co ₃ O ₄ nanoparticle	0.01-3	30 mA g ⁻¹	1334/~1070	407	100	[42]
Plate-like Co ₃ O ₄	0.02-3	178 mA g ⁻¹	1228/870	618	30	[43]
Hollow Co ₃ O ₄ @C sphere nanoparticle	0.01-3	74 mA g ⁻¹	~1050/732	750	20	[44]
Nanosized Co ₃ O ₄	0.01-3	220 mA g ⁻¹	1411/931	913	20	[S1]
Co ₃ O ₄ Hollow microsphere	0.01-3	60 mA g ⁻¹	1241/1061	633	25	[S2]
Meso- and macro-porous Co ₃ O ₄ -carbon composite powders	0.01-3	1400 mA g ⁻¹	~1150/~920	644	100	[S3]
Mesoporous Co ₃ O ₄ cubes	0.01-3	89 mA g ⁻¹	1298/986	980	60	[S4]
Co ₃ O ₄ @graphene nanocomposite	0.01-3	50 mA g ⁻¹	1097/~753	~935	30	[85]
Co ₃ O ₄ -nanobubble- decorated RGO spheres	0.001-3	2000 mA g ⁻¹	1471/~1050	1156	200	[S6]
Multishelled Co ₃ O ₄ hollow microspheres (triple-shelled)	0.05-3	50 mA g ⁻¹	2064/~1600	1616	30	[87]

Table S1. Comparison of the electrochemical performances of the hollow Co_3O_4 nanopowders prepared by nanoscale Kirkendall diffusion process with the reported results of the nanostructured cobalt oxide materials.

 $(1 \text{ C} = 890 \text{ mA g}^{-1})$

References

- (S1) Z. Yuan, F. Huang, C. Feng, J. Sun and Y. Zhou, *Materials Chemistry and Physics*, 2003, **79**, 1-4.
- (S2) Y. Liu and X. Zhang, *Electrochimica Acta*, 2009, **54**, 4180-4185.
- (S3) J. H. Kim and Y. C. Kang, *Nanoscale*, 2014, 6, 4789-4795.
- (S4) G. Huang, S. Xu, S. Lu, L. Li, and H. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 7236-7243.
- (S5) Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and H. M. Cheng, ACS Nano, 2010, 4, 3187-3194.
- (S6) G. D. Park, J. S. Cho and Y. C. Kang, *Nano Energy*, 2015, 17, 17-26.
- (S7) J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang and D. Wang, *Angew. Chem.*, 2013, **125**, 6545-6548.