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In this Electronic Supplementary Information we provide a more detailed description of the model of static 

orientational disorder and reorientational exchange, employed to describe 
2
H quadrupole-perturbed NMR spectra 

in liquid single crystal elastomers (LSCEs). 

Theoretical Calculations 

Distribution of domain directors. In oriented LSCEs, the distribution of orientations of domain director, 

𝑤𝑠𝑡𝑎𝑡(𝑢, 𝜎𝑢), is assumed to be spherical Gaussian: 

𝑤stat(𝑢, 𝜎𝑢) =
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Here 𝑢 = cos 𝜃 ∈ [−1,1], with 𝜃 denoting the orientation of a given domain, whereas 𝜎𝑢 ∈ [0,∞] represents the 

dispersion of the distribution. By introducing tan 𝜎𝜃 = 𝜎𝑢, dispersion can be quantified by 𝜎𝜃 ∈ [0,90°]. Erfi is the 

imaginary error function.  𝑤stat(𝑢, 𝜎𝜃 = 90°) = 1/2 corresponds to isotropic distribution of domains, a situation 

found in polydomain samples. Relation (1) implies cylindrical symmetry of domain misalignments.  

Domain orientational order parameter 𝑄stat ≡ 𝑃2(𝑐𝑜𝑠𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ can be expressed as  

𝑄stat(𝜎𝑢) = ∫ 𝑤stat(𝑢, 𝜎𝑢)
(3𝑢2−1)
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Transversal precession of magnetization in the case of reorienting nematic director. The Bloch equation for the 

magnetization M, precessing in the plane perpendicular to the external magnetic field, and nematic director 

subject to RMTD or RMTD-equivalent director reorientation process, is expressed as
1–3

: 

𝜕𝑀

𝜕𝑡
= 𝑖2𝜋𝜈±𝑀 −

𝑀

𝑇2
+ 𝜔𝐷

𝜕2𝑀

𝜕𝑢2  , (3)  

with 𝜔𝐷  representing the angular diffusion and 𝑇2 the spin-spin (transverse) relaxation rate of the magnetization.  

In the following, we will solve the differential Eq. (3) in a discrete approximation
4
. For arbitrary distribution 

𝑤stat(𝑢, 𝜎𝑢), we introduce a new “isoprobability” variable 𝑣(𝑢, 𝜎𝑢) with respect to which the probability density 

𝑤𝑠𝑡𝑎𝑡(𝑣, 𝜎𝑢) is constant: 

𝑣(𝑢, 𝜎𝑢) = ∫ 𝑤(𝑢,,
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The isoprobability variable 𝑣 is introduced in order to simplify the calculation, specifically to allow for the use of a 

relatively simple form of discrete exchange matrix K  (Ref. 4) adapted to the case where, in the equilibrium, all the 

discrete orientational states are equally probable. We discretize the problem by dividing the [0,1] range of 

variable 𝑣  into 𝑁  equidistant intervals [(𝑘 − 1)∆𝑣, 𝑘∆𝑣] of lengths ∆𝑣 = 1 𝑁⁄  and equal discrete probabilities 

𝑃stat,𝑘 = 1 𝑁⁄ , indexed by 𝑘 = 1,⋯ ,𝑁. Such use of variable 𝑣 is equivalent to dividing the [−1,1] range of variable 

𝑢  into 𝑁  non-equidistant intervals [𝑢𝑘
−, 𝑢𝑘

+]  of lengths Δ𝑢𝑘 = 𝑢𝑘
+ − 𝑢𝑘

− , containing discrete probabilities 

independent of 𝑘, 

𝑃stat,𝑘 = ∫ 𝑤stat(𝑢, 𝜎𝑢) ⅆ𝑢
𝑢𝑘

+

𝑢𝑘
− =

1

𝑁
 , (5) 

with integration limits 𝑢𝑘
− = 𝑢(𝑣 = (𝑘 − 1)∆𝑣) and 𝑢𝑘

+ = 𝑢(𝑣 = 𝑘∆𝑣) where 𝑢(𝑣) is the inverse function of 𝑣(𝑢) 

(Eq. (4)). 
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The discrete form of Eq. (3) is obtained by rewriting the derivatives in terms of differences
4
: 

�̇�±(𝑡) = (𝑖𝛀± −
1

�̃�2
𝐈 +

1

𝜏
𝐊) ∙ 𝑴(0) = 𝓚± ∙ 𝑴(0) . (6) 

𝓚± = (𝑖𝛀± − 𝑇2
−1𝐈 + 𝜏−1𝐊) represents magnetization exchange matrix in inverse second units (s−1). 𝛀± = 2𝜋𝝂± 

is the diagonal matrix of the effective magnetization precession frequencies, averaged within respective intervals 

Δ𝑢𝑘 , 

〈𝜈〉𝑘
± = 𝑁 ∫ 𝜈±(𝑢)𝑤stat(𝑢, 𝜎𝑢) ⅆ𝑢

𝑢𝑘
+

𝑢𝑘
−  , (7) 

where 𝜈±(𝑢) = ±3�̅�𝑞𝑆 (3𝑢2 − 1) 8⁄  as defined by Eq. (3) of the Manuscript. 

𝐈 is the identity matrix and 𝐊 the dimensionless population exchange matrix
4
 (only nonzero elements shown) 

𝐊 =
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With ± we take into account the two components of the 
2
H quadrupole-perturbed spectrum. The nominal 

exchange time is given by 𝜏 = 4∆𝑣2 𝜔𝐷⁄ = (𝑁2𝜔𝐷 4⁄ )−1. The equilibrium dimensionless magnetization equals 

 𝑴(0) = (1,1,⋯ ,1,1)/𝑁 (9) 

since the magnetization states are parametrized by the isoprobability variable 𝑣 and are therefore equally 

probable. The formal solution to equation (6) is in terms of matrix exponent of magnetization exchange matrix 

𝓚±, 

𝑴±(𝑡) = exp(𝓚±𝑡) ∙ 𝑴(0) . (10) 

Generalized dimensionless population exchange matrix. The above tridiagonal population exchange matrix is 

suitable for modeling reorientational processes in the “weak-collision” limit where the exchange only takes place 

between two neighboring sites (∆𝑁 = 1). Nevertheless, the “strong-collision” case, where the exchange is 

effective between a general pair of states (1 ≤ ∆𝑁 ≤ 𝑁 − 1), can as well be addressed, by solely generalizing the 

exchange matrix to include more distant off-diagonal terms, provided that it satisfies the principle of detailed 

balance
5
. In our specific case of homogeneous equilibrium (stationary) state (expression (9)), this requires that the 

sum of all elements in any row or column vanishes. 

Relaxation dynamics of the orientational order parameter. As discussed above, any dynamic reorientation of 

nematic director, with characteristic time of the order of or shorter than the inverse rigid lattice line width, should 

result in the motional narrowing of the spectra. Let us now relate this reorientational process with the exchange 

modelling presented above. We conjure that at time 𝑡 = 0, the system is ideally ordered, 𝑤(𝑢, 𝑡 = 0) = 𝑤0(𝑢) =

(𝛿(𝑢 − 1) + 𝛿(𝑢 + 1))/2, and relaxes in the course of time towards the stationary distribution, 𝑤(𝑢, 𝑡 → ∞) →

𝑤stat(𝑢, 𝜎𝑢) (relation (1)). Within the discrete exchange model, introduced above, this is equivalent to the initial 

probability vector 

𝑷(0) = (1,0,0,⋯0,0,1)/2 , (11) 

subject to exchange dynamics 

�̇�(�̃�) = 𝐊 ∙ 𝑷(0) (12) 

solving to 
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𝑷(�̃�) = (𝑃1(�̃�), 𝑃2(�̃�),⋯ , 𝑃𝑁−1(�̃�), 𝑃𝑁(�̃�)) = exp(𝐊 �̃�) ∙ 𝑷(0) . (13) 

We have introduced dimensionless exchange time �̃� = 𝑡/𝜏. According to solution (12), there exist 𝑁 characteristic 

dimensionless times 𝜏𝑗 , 𝑗 = 1,⋯ ,𝑁, of the exchange process, corresponding to negative inverse values of the 

dimensionless eigenvalues of the population exchange matrix, 𝜏𝑗 = −𝜅𝑗
−1. In a system modelled with a general 

exchange matrix 𝐊 and a large number of sites 𝑁, these times span a broad range from short ones of the order of 

1 towards very large values. The stationary state 

𝑷stat = 𝑷(�̃� → ∞) = (1,1,⋯ ,1,1)/𝑁 . (14) 

is associated with diverging characteristic time, equivalently with 𝜅 = 0 that solves �̇�(�̃�) = 𝐊 ∙ 𝑷stat = 0. 

It is rather tedious to quantify the reorientational exchange by a spectrum of relaxation times. We simplify the 

description by regarding this process in terms of the decay of the orientational order parameter  

𝑄(𝑡) = ∫
(3𝑢2−1)

2
𝑤(𝑢, 𝑡)𝑑𝑢

1

−1
 , (15) 

expressed in the framework of chemical exchange among 𝑁 nematic director orientational states as 

𝑄(�̃�) = ∑
𝑃𝑘(𝑡) (3〈𝑢2〉𝑘−1)

2
𝑁
𝑘=1 , (16a) 

〈𝑢2〉𝑘 = 𝑁 ∫ 𝑢2𝑤stat(𝑢, 𝜎𝑢) ⅆ𝑢
𝑢𝑘

+

𝑢𝑘
−  . (16b) 

Specifically, the evolution of 𝑷(�̃�) from 𝑷(0) to 𝑷stat is associated with the evolution of 𝑄(�̃�) from the initial ideal 

order 𝑄(�̃� = 0) = 1 towards 𝑄(�̃� → ∞) → 𝑄stat . The decay in 𝑄(�̃�) is inherently multi-exponential (𝑁 different 

characteristic times within the discrete chemical exchange approximation, see above) and can be expressed as 

𝑄(�̃�) − 𝑄stat = (1 − 𝑄stat)𝑓(�̃�) . (17) 

The decay function 𝑓(�̃�) is monotonously decreasing with time from the initial value 𝑓(�̃� = 0) = 1 to 𝑓(�̃� → ∞) =

0. We now introduce dimensionless nominal 𝑄-decay time 𝜏𝑄 = 𝜏𝑄/𝜏 as the time during which 𝑓(�̃�) decreases to 

1/2: 

𝑄(𝜏𝑄) − 𝑄stat = (1 − 𝑄stat)/2 ⇒  𝜏𝑄(𝜎𝑢, 𝑁, Δ𝑁) . (18) 

As both 𝑄(�̃�) and 𝑄stat depend on 𝜎𝑢, 𝑁, and ∆𝑁, so does 𝜏𝑄 = 𝜏𝑄/𝜏. A representative 𝑄(�̃�) decay is shown in 

Fig. 1. 

 

Figure 1. Time dependence of the dynamic orientational order parameter 𝑄(�̃�) in a partially-aligned sample with 𝜎𝜃 = 30° (𝜎𝑢 = 0.58) 
 ⇒ 𝑄stat = 0.22. The point that determines nominal 𝑄-decay time is marked with the orange dot. Points in red color were calculated using 
Eqs. (17) and (18) with 𝑁 = 100 and ∆𝑁 = 3. Blue solid line is an interpolated guide to the eyes. 

It is noteworthy that, in the limit of large 𝑁 and ∆𝑁 = 1 (weak collision), the reorientational exchange model, 

introduced above, readily reproduces conventional diffusion with a Gaussian 𝑤(𝑢, �̃�) propagator profile 
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𝑤𝐺(𝑢, �̃�) =
1

√2𝜋σ𝑢
2(𝑡)

(𝑒
−

(𝑢−1)2

2σ𝑢
2(�̃�) + 𝑒

−
(𝑢+1)2

2σ𝑢
2(�̃�)) , (19) 

With 𝜎𝑢
2(�̃�) = 2�̃�𝐷 �̃� = 8 𝑁2⁄ �̃� characteristic for one-dimensional diffusion processes. The definition range of the 

tilt variable is 𝑢 ∈ [−1,1], so that the Gaussian approximation is only valid for 𝜎𝑢
2(�̃�) ≪ 1, equivalently �̃� ≪ 𝑁2/8, 

since in this case the distribution does not yet extend considerably towards 𝑢 = 0 (no overlap of the positive and 

negative 𝑢 branches of the distribution given by relation (19)). For larger �̃�, the profile of 𝑤(𝑢, �̃�) becomes non-

Gaussian and the relation 𝑁2𝜎𝑢
2(�̃�)/(8�̃�) = 1 is not satisfied anymore. 

In the case of Gaussian propagator approximation, the dynamic order parameter can be expressed as 

𝑄(�̃�) ≈ 1 − 3√
2

𝜋
𝜎𝑢(�̃�) +

3𝜎𝑢
2(𝑡)

2
.  (20) 

Evidently, condition 𝜎𝑢
2(�̃�) ≪ 1 that implies Gaussian profile of 𝑤(𝑢, �̃�) is equivalent to condition 1 − 𝑄(�̃�) ≪ 1. 

Motional narrowing of deuteron NMR spectral lines. Deuteron NMR spectrum is calculated as a Fourier transform 

𝒥±(𝜈) ∝ Re{∫ ℳ±(𝑡)e−i2𝜋𝜈𝑡𝑑𝑡
∞

−∞
}  (21) 

of the time-dependent transversal magnetization ℳ±(𝑡) = ∑ 𝑀𝑘
±(𝑡)𝑁

𝑘=1 . Here 𝑀𝑘
±(𝑡) are the components of the 

magnetization vector 𝑴±(𝑡) (Eq. (10)). Using expressions (9) and (10) and observing that 𝑴(0) = 𝑷stat we rewrite 

ℳ±(𝑡) ∝ 𝑷stat
T ∙ exp(𝓚±𝑡) ∙ 𝑷stat  (22) 

and consequently
1
 

𝒥±(𝜈) ∝ Re{𝑷stat
T [𝑖2𝜋(𝛎± − 𝜈𝐈) − �̃�2

−1𝐈 +
1

𝜏
𝐊]

−1
𝑷stat} .  (23) 

We now relate the spectrum to the relaxation dynamics of the order parameter. The nominal exchange time 𝜏, 

which determines the nematic director reorientational exchange effectiveness, is related to the nominal 𝑄-decay 

time via 

𝜏(𝜎𝑢 , 𝑁, ∆𝑁) =
𝜏𝑄

�̃�𝑄(𝜎𝑢,𝑁,∆𝑁)
 .  (24) 

One can regard Q as the nominal time characterizing the loss of correlations among orientational states of the 

nematic director, without knowing the details on the reorientational processes. With a specific choice of 

orientational distribution (parameter 𝜎𝑢 = tan 𝜎𝜃 ) and exchange topology (matrix 𝐊(𝑁, ∆𝑁)), relation (24) 

provides for scaling of the nominal exchange rate 𝜏−1 with respect to 𝜎𝑢, 𝑁, and ∆𝑁 to value 𝜏(𝜎𝑢, 𝑁, ∆𝑁) that will 

result in a desirable 𝜏𝑄. The dimensionless scaling denominator 𝜏𝑄(𝜎𝑢, 𝑁, ∆𝑁) is determined by methodology 

described in previous subsection. 𝜏𝑄, measured against the rigid lattice line width, is found to determine to what 

extent the detected spectrum will be motionally averaged, and thus plays the role of exchange time 𝜏exch.  The 

motional narrowing effectiveness parameter is thus 

𝛼 = (Δ𝜔r.l.𝜏𝑄)−1 ,  (25) 

with Δ𝜔r.l. = 2𝜋Δ𝜈r.l. where Δ𝜈r.l. ≈ �̅�𝑞𝑆 denotes the rigid lattice line width.  𝛼 ≪ 1 represents the rigid lattice 

regime, 𝛼 ≈ 1 the intermediate regime, and 𝛼 ≫ 1 the strong motional narrowing regime. 𝒥±(𝜈) can then be 

rewritten in terms of 𝛼 as 

𝒥±(𝜈) ∝ Re{𝑷stat
T [𝑖2𝜋(𝛎± − 𝜈𝐈) − 𝑇2

−1𝐈 + 𝛼𝜏𝑄2𝜋Δ𝜈r.l.𝐊]
−1

𝑷stat}. (26) 

According to above relation, if one knows the rigid lattice line width Δ𝜈r.l. as well as 𝜏𝑄(𝜎𝑢 , 𝑁, ∆𝑁) and 𝐊(𝑁, ∆𝑁), 

motional narrowing effects can be reproduced by varying a single parameter 𝛼 in the range [0,∞]. The usefulness 

of the 𝛼-parametrization is in particular supported by the fact that the intermediate motional narrowing regime is 

reached at 𝛼 ≈ 1 universally for any exchange type, i.e. independently from 𝜎𝑢, 𝑁, and ∆𝑁. We finally note that 

the continuous director reorientational exchange case is reproduced in the 𝑁 → ∞ limit (we used 𝑁 = 100 in our 

simulations). 
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