Electronic supplementary information

Computational Prediction of Electronic Structure and Optical Properties of Graphene-Like β-CuN₃

Xu Zhang, Xudong Zhao, Yu Jing, Dihua Wu and Zhen Zhou*

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Computational Centre for Molecular Science, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350,

P.R. China

*Corresponding Author, Email: zhouzhen@nankai.edu.cn (ZZ).

Fig. S1 Phonon dispersion spectrum of β -CuN₃ monolayer. The fractional coordinates of high-symmetry points: Γ (0, 0, 0), K (0.5, 0, 0) and M (0.5, 0.5, 0).

The standard free energy of CuN₃ is calculated based on the following equations:

$$\Delta G_{f}^{\circ} = G_{CuN_{3}(s)} - G_{Cu(s)}^{\circ} - 3/2G_{N_{2}(g)}^{\circ}$$
(1)

$$G_{CuN_{3}(s)}^{\circ} = E_{f[CuN_{3}(s)]} + E_{zpe[CuN_{3}(s)]} - T\Delta S_{CuN_{3}(s)}(T)$$
(2)

$$G_{Cu(s)}^{\circ} = E_{f[Cu(s)]} + E_{zpe[Cu(s)]} - T\Delta S_{Cu(s)}(T)$$
(3)

$$G_{N_{2}(g)}^{\circ} = E_{f[N_{2}(g)]} + E_{zpe[N_{2}(g)]} - T\Delta S_{N_{2}(g)}(T)$$
(4)
The following equation can be obtained from (1), (2), (3) and (4)

e following equation can be obtained from (1), (2), (3) and (4).

$$\Delta G_{f}^{\circ} = E_{f[CuN_{3}(s) - Cu(s) - 3/2N_{2}(g)]} + E_{zpe[CuN_{3}(s) - Cu(s) - 3/2N_{2}(g)]} - T\Delta S_{[CuN_{3}(s) - Cu(s) - 3/2N_{2}(g)]}(T)$$
(5)

Moreover, the entropy changes of $CuN_3(s)$ and Cu(s) can be neglected, thus equation (5) can be written as:

$$\Delta G_{f}^{\circ} = \Delta E_{f} + \Delta E_{zpe} - 3/2T\Delta S(T)$$
(6)

where ΔE_f is the formation energy of β -CuN₃, ΔE_{zpe} is the zero point energy correction and ΔS is the entropy of N₂ under standard conditions (T = 298 K). The entropy of N_2 at standard condition (298 K) is taken from NIST database, which is 191.61 J·mol⁻¹·k⁻¹, thus the calculated entropy change for N₂ is 0.59 eV at 298 K. As a result, the calculated formation enthalpy for β -CuN₃ bulk and monolayer are 0.45 and 0.57 eV/atom, respectively, while he calculated Gibbs free energy for β -CuN₃ bulk and monolayer are 0.74 and 0.84 eV/atom, respectively.

The standard free energy of $Cu(N_3)_2$ is calculated based on the following equations:

$$\Delta G_{f}^{\circ} = G_{Cu(N_{3})_{2}(s)}^{\circ} - G_{Cu(s)}^{\circ} - 3G_{N_{2}(g)}^{\circ}$$
(7)
(7)
$$G_{Cu(N_{3})_{2}(s)}^{\circ} = E_{f[Cu(N_{3})_{2}(s)]}^{\circ} + E_{zpe[Cu(N_{3})_{2}(s)]}^{\circ} - T\Delta S_{Cu(N_{3})_{2}(s)}(T)$$
(8)
$$G_{Cu(s)}^{\circ} = E_{f[Cu(s)]}^{\circ} + E_{zpe[Cu(s)]}^{\circ} - T\Delta S_{Cu(s)}(T)$$
(9)
$$G_{N_{2}^{\circ}(g)}^{\circ} = E_{f[N_{2}(g)]}^{\circ} + E_{zpe[N_{2}(g)]}^{\circ} - T\Delta S_{N_{2}(g)}(T)$$
(10)

The following equation can be obtained from (7), (8), (9) and (10).

$$\Delta G_{f}^{\circ} = E_{f[Cu(N_{3})_{2}(s) - Cu(s) - 3/2N_{2}(g)]} + E_{zpe[Cu(N_{3})_{2}(s) - Cu(s) - 3/2N_{2}(g)]} - T\Delta S_{[Cu(N_{3})_{2}(s) - Cu(s) - 3N_{2}(g)]}(T)$$
(11)

Moreover, the entropy changes of $Cu(N_3)_2(s)$ and Cu(s) can be neglected, thus equation (11) can be written as: $\Delta G_{f}^{\circ} = \Delta E_{f} + \Delta E_{zpe} - 3T\Delta S(T)$ (12)

where ΔE_f is the formation energy of $Cu(N_3)_2$, ΔE_{zpe} is the zero point energy correction and ΔS is the entropy of N_2 under standard conditions (T = 298 K). The calculated Gibbs free energy for $Cu(N_3)_2$ is 0.90 eV/atom.

system	a (Å)	b (Å)	Cu-N (Å)	N-N (Å)	$D_{\mathrm{in}}(\mathrm{\AA})$	$E_{\rm ex}$ (J/m ²)	Band gap (eV)
bulk	3.29	10.70	1.86/1.98	1.16/1.21	2.70	\	2.23
monolayer	3.34	10.59	1.85/1.98	1.17/1.21	\	0.41	2.39
bilayer	3.28	10.66	1.85/1.98	1.17/1.21	2.62	0.43	2.05
trilayer	3.28	10.67	1.86/1.98	1.16/1.21	2.69	0.44	2.00
tetralayer	3.28	10.68	1.86/1.98	1.17/1.21	2.69	0.44	2.00

Table S1 Lattice parameters *a* (Å), *b* (Å), length of Cu-N bond (Å) and N-N bond (Å), interlayer distance D_{in} (Å), the exfoliation energy E_{ex} (J/m²) and the band gap calculated by HSE06 for β -CuN₃ bulk, monolayer, bilayer, trilayer and tetralayer, respectively.

Table S2 The relative Z-axis coordinates (Å) of the outer layer atoms for bilayer, trilayer and tetralayer β -CuN₃. N₁, N₂ and N₃ represent the position of bonding with two Cu atoms, the center of N₃ and bonding with one Cu atom, respectively.

system	Cu	N ₁	N ₂	N ₃
bilayer	0	5.1×10-2	3.3×10-2	1.1×10-2
trilayer	0	4.3×10-2	3.4×10-2	2.3×10-2
tetralayer	0	4.1×10 ⁻²	3.1×10 ⁻²	1.9×10 ⁻²

Fig. S2 Band structures near Fermi level calculated with HSE06 functional for flat (a) trilayer and (b) tetralayer β -CuN₃.

Fig. S3. Density of states of (a) bulk, (b) monolayer, (c) bilayer, (d) trilayer and (e) tetralayer β -CuN₃. Fermi level is set to zero and denoted by a red dash.

Fig. S4 Spatial structure of wave functions for β -CuN₃ using an isosurface of 0.005 e Å⁻³. The top and side view of VBM and CBM for (a) bulk structure, (b) monolayer, (c) bilayer, (d) trilayer and (e) tetralayer.

	atom	c.t.	atom	c.t.	atom	c.t.	atom	c.t.
bulk	Cu	-0.71	N_1	0.22	N ₂	0.46	N ₃	0.03
monolayer	Cu	-0.66	N_1	0.23	N_2	0.32	N_3	0.11
bilayer	Cu	-0.67	N_1	0.35	N_2	0.18	N_3	0.12
trilayer	Cu	-0.67	N_1	0.34	N_2	0.20	N_3	0.13
	Cu'	-0.66	N_1	0.35	N_2	0.21	N3'	0.10
tetralayer	Cu	-0.67	N_1	0.34	N_2	0.20	N_3	0.13
	Cu'	-0.65	N_1	0.33	N_2	0.21	N ₃ '	0.11

Table S3 Calculated charge transfer c.t. (e) for β -CuN₃. N₁, N₂ and N₃ represent the position of bonding with two Cu atoms, the center of N₃ and bonding with one Cu atom, respectively. For trilayer and tetralayer, Cu and Cu' represent the position of the outer layer and the inner layer, respectively, the same as N.

Fig. S5 Imaginary parts $\varepsilon_2(\omega)$ of dielectric function for β -CuN₃. (a) x direction; (b) y direction; (c) z direction; (d) the average of x, y and z directions. The area between the red and the purple lines represents the visible range. The directions are the same as those shown in Fig. 1.

Fig. S6 Real parts $\varepsilon_1(\omega)$ of dielectric function for β -CuN₃. (a) x direction; (b) y direction; (c) z direction; (d) the average of x, y and z directions. The area between the red and the purple lines represents the visible range. The direction as shown in Fig. 1.

Fig. S7 Optical absorption coefficient $\alpha(\omega)$ for β -CuN₃.