## **Supporting Information**

## **Optical Design of ZnO-based Antireflective Layers for Enhanced GaAs Solar Cell Performance**

*Hye Jin Lee,<sup>a</sup> Jae Won Lee,<sup>a</sup> Hee Jun Kim,<sup>a</sup> Dae-Han Jung,<sup>a</sup> Ki-Suk Lee,<sup>a</sup> Sang Hyeon Kim,<sup>b</sup> Dae-myeong Geum,<sup>b</sup> Chang Zoo Kim,<sup>c</sup> Won Jun Choi,<sup>b\*</sup> and Jeong Min Baik <sup>a\*</sup>* 

<sup>*a*</sup> School of Materials Science and Engineering, KIST-UNIST-Ulsan Center for Convergent Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea.

<sup>b</sup> Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul, 136-791, Korea

<sup>c</sup> Nano Process Division Korea Advanced Nano Fab Center Gyeonggi-do 443–270, Korea

\* Corresponding author

\* To whom correspondence should be addressed. E-mail: wjchoi@kist.re.kr, jbaik@unist.ac.kr



**Fig. S1** Top view of SEM image for ZnO nanosheet/Al/ZnS with thickness of Al (a) 0.5 nm, (b) 1 nm, (c) 3 nm and (d-f) histogram of the thickness distributions of the nanosheets with Al thickness, respectively.



**Fig. S2** Scanning electron micrographs of (a) ZnO nanosheets and (b) ZnO nanowires grown on Si substrates. The corresponding EDXS results are also shown in (c) and (d), respectively.



**Fig. S3** The peak in the Al 2p spectra corresponds to Al-O and Al-Zn-O bonds. The Al-O binding energy was observed at 73.48 eV, lower than that ( $\sim$  75.6 eV) of the pure Al<sub>2</sub>O<sub>3</sub>.



**Fig. S4** Transmission electron microscopy (TEM) images of  $MgF_2$  thickness on  $MgF_2/ZnO$  nanowires (scale bar is 5 nm).



Fig. S5 Simulated reflectance spectra for the ZnO/TiO<sub>2</sub> and ZnO/ZnS double layered films with

different thickness. The thickness is ZnO 100nm, TiO<sub>2</sub> (or ZnS) (a) 50 nm, (b) 60 nm, (c) 70 nm and (d) 100 nm.