
APPENDIX S1

I.The free energy distribution 

The Hamiltonian or energy function for the interactions between 

ligands and receptors can be described by the collections of contact 

interactions between the atom pairs , where is the contact ij ij
ij

E J   ij

variable between atoms with certain distance cutoff and the 
 
is the ijJ

coupling strength for specific contact pair. Since there are many different 

types of atoms and also many different cutoff distances for the 

interactions, different 
 
shave different values. This forms a distribution ijJ

for the coupling J.  Since the number of different  couplings are large, ijJ

the statistical distribution should have a Gaussian form The coupling 

strengths between the atomic pairs Jij is assumed to be Gaussianly 

distributed： from the large number theorem. Then 
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we can prove that this is equivalent to a random energy model with the 

interaction energy follows a Gaussian distribution：

[1]. This reflects the complexity of the underlying 
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interactions in contrast to the conventional models for simple systems 

where the coupling strengths are fixed and not distributed.

The resulting random energy model can be defined as follows: 

(1). The system has MN energy levels Ei where M is the number of the 
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configurations for unit while N is the number of units. 

(2) These energy levels are distributed according to the probability 

distribution . J is the coupling strength 2 1/ 2 2 2( ) ( ) exp( / )P E N J E NJ  

between contacts. 

(3). The energy leves Ei are independent random variables.

From the random energy model, we can explore the statistical 

properties of associated free energy ( reference 498 in the main text). 

The system composes of MN energy levels Ei. The corresponding 

partition function Z is then given by . Once the 
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partition function Z is known, the free energy is known. 

Notice that since the energy is distributed due to the statistical 

properties of the coupling strengths, we expect the corresponding 

partition function is distributed. Therefore, we expect the corresponding 

free energy is also distributed. We can calculate the average free energy 

by the formula: ln [ ( ) ]ln ({ })i i i
i

F T Z T P E dE Z E    

Furthermore, the free energy can be obtained using the formula:

(here, kB =1). Based on the previous studies [2], we can reach lnBF k T Z 

the form of the probability distribution P(Z) of Z from the distribution of 

the energy.

After some algebra, the distribution of partition function reads: 



for finite;
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The distribution of partition function reads:

for exponentially large 
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in N.

The moments <Zv> of the partition function is: 

and the function g(x) is 
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When v>T/Tc, the formula 

dominates the integral 
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and the moments for T>Tc and ( )vZ P Z dZ 2 2 2~ 2 exp[ / 4 ]v NZ Nv J T 

v>(T/Tc)2 or  T<Tc and v>T/Tc. can be recovered. Therefore, by the 

formula  and F=-TlnZ(kB 
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=1kb=1), we can easily obtain the gaussian distribution: P(F) ~

as shown in equation 71 in the main text. In the paper, we use 
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the f(F) to represent the free energy distribution. Notice that the g(x) 

mentioned above has an asymptotic form 

for . Based on the formula
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, one can also recover the moments
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

for T<Tc and v<T/Tc. Therefore, we can obtain 
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the distribution P(Z) of Z at the tail similar to g(x) above. Since partition 

function Z is power law distributed asymptotically at the tail, the 

associated free energy is therefore exponentially distributed at the tail as 

shown in equation 85 in the main text. The exponential distribution of 

free energy can also be obtained by the formula (3) 

 [3],  is a function of the temperature,  ( ) .exp ( ). ( )a a c c af f f f f f      cf

is a cut-off free energy needed at an intermediate stage.  are af

independent random variables representing the free energy. The authors 

had succeeded in proving the formula (3) by computing the inclusive 

distributions of probabilities f(k). 
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II. The kinetics of binding

Bryngelson and P. G. Wolynes had studied the folding time of protein 

since the 1980's, based on a simple folding model, which has numerous 

metastable states [1]. The continuous time random walk (CTRW) 

approach was applied to determine the time scale of folding. By a simple 

generalization of transition-state theory and some approximations, a 

simple expression of the folding time was gained. This study has become 

a fundamental work for studying the folding time. Furthermore, the 

protein folding kinetics had been studied according to the statistical 

energy landscape theory, with a defined expression for the mean first-

passage time (MFPT) to characterize the folding kinetics. 

The calculations regarding the MFPT in this study are mainly based on 

the analytical results in the previous studies [1-2]. The procedure to 

derive MFPT or time scale is rather long. We shall assume that the reader 

has at least a basic understanding of the ideas and results of these earlier 

works. Herein, we recall some basic results provided in the study [1]. 

First, the folding problem can be expressed by a continuous time random 

walk, and the waiting time distributions are correlated with the 

distributions of escape rates from each site. Then, the continuous time 

random walk can be represented by the generalized master equation. Next, 

the results show that the continuum limit of the generalized master 



equation is a generalized Fokker-Planck equation. After that, the mean 

first passage time for the generalized Fokker-Planck equation is 

calculated, and the mean first passage time is correlated with the first 

inverse moment of the distribution of the rate of escape from the sites. 

Finally, a simple approximate expression for the mean first passage time 

is derived. 

Due to high similarity between folding and binding, the binding 

kinetics can be realized in the same way. Then the kinetic binding process 

is also approximated by the Metropolis dynamics
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Where R(E1→E2) is the transition rate for a receptor-ligand system from 

binding state 1 to 2, with total energies of system E1 and E2, respectively. 

R0 is an overall constant characterizing the inverse time scale for the 

transition process between binding states (R0 is generally of on the order 

of inverse nanoseconds). Thus, the transition rate from one binding state 

to a neighboring binding state can be determined by the energy gap 

between these two states. This problem can be addressed through the 

aforementioned CTRW. One can further reduce the multidimensional 

random walk problem to the simple one-dimensional CTRW, and 

therefore a generalized master equation. In summary, one can first stratify 

the binding energy landscape in the order parameter  space, then a 



relevant energy distribution function P(E, ) is gained. The 

corresponding transition rate distribution function P(R, ) can be 

calculated through the Metropolis dynamics given above. By specifying 

the jumping rate R for a binding complex at a binding state with the 

specific order parameter  to its neighboring states adjacent in order 

parameter space, one can obtain the associated waiting-time distribution 

 for the complex to reside in a binding state for time (i.e. residence ( , )  

time) before it leaves. Finally, a CTRW can be solved with the waiting-

time distribution for the binding complex system and the associated 

jumping probabilities between successive ’s. These probabilities are 

approximated to be time-independent, and the jumping process is 

equivalent to the quasi equilibrium assumption. Under this assumption, 

these probabilities can be gained by utilizing the asymptotic distribution

(2)( )lim ( , ) FG e  


  




Where G( ,τ) represents the function of probability distribution for the 

binding complex at time τ, and β=1/ kBT (here，kB=1). Then one can 

obtain a generalized kinetic master equation using the CTRW 

approximation, it can be expressed in the Laplace-transformed space as

(3)ˆ( , ) ( ) ( , ) ( , )isG s n s G s     

Where represents the initial distribution of G( ,τ). ( )in  

While represents a linear operator related to the jumping ˆ( , )s 

probabilities and the waiting time distribution. In the local connectivity 



case, the generalized master equation given above is reduced to a 

generalized Fokker-Planck equation in the Laplace-transformed space
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s represents the Laplace transform variable over time τ, while D( ,s) 

represents the frequency-dependent diffusion parameter. F( ) means the 

average of free energy from the random energy model. 

corresponds to the Laplace transform of , the latter ( , )G s% ( , )G  

represents the probability density function. That is to say, d is the ( , )G   

probability for a binding complex to stay at d space at time τ. 

represents the initial condition for . One can set the boundary ( )in  ( , )G  

conditions for the equation as a reflecting one at =0, 

, 
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  
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corresponds to the non-native binding states, while an absorbing one at

, =0, where the binding complex is in the native binding f  ( , )fG s%

state. Here, to facilitate the calculation of the first passage time 

distribution, an absorbing boundary condition at is given. f 

Then we denote the distribution of first passage time by  and ( )pF t

define  to be the probability that a molecule has not made a first t

passage by time t. The distribution  and  are related by: ( )pF t t
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The mean first passage time is expressed as: 

(7)
0

( )pt dttF t


 

From eq.6 and eq.7 above, we can obtain a useful expression for the 

mean first passage time: 

(8)
0

t dt t

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Suppose that we make the “site”  a perfect absorber, so a molecule f

that makes a first passage simply leaves the system. The probability of a 

molecule being in the system at time t is given by , sot

(9)
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And combining eq. 8 and eq.9, we obtain:
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In addition, the eq.4 can be also written as: 
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The boundary conditions are a reflecting boundary condition at =0, 

=0, and an absorbing boundary condition at , =0. (0, )j s f ( , )fG s

Integrating eq. 11 from 0 to  and using the reflecting boundary condition 

gives 

(13) 
0

( , ) ' ( ', ) ( ')f

ij s d sG s n


     

And substituting the expression for above into eq. 12 yields ( , )j s
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Next, integrating eq. 14 from  to  and using the absorbing boundary  f

condition obtains
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Here, eventually all of the molecules are assumed to make a first 

passage and therefore be absorbed, so from the relation  
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Taking the limit of eq. 15 as s goes to zero and using eq. 19 yields 
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Which is the promised expression for . Finally, we substitute eq. ( ,0)G 

17 into eq. 10 and use the property  to obtain the mean first ( ,0) ( )U F  

passage time expression:
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Equation 18 simplifies when  is peaked about some , so ( )in  i

, then ( ) ( )i in     

(19) 
0

exp ( ) ( ')
'

( ,0)
f

i

F F
t d d

D
 



   
 




  

The Equations 18 and 19 give us the final expressions for the folding 

time. 

Here, we can also rewrite the Eq.4 in the order parameter Q space. The 



binding kinetic process follows a diffusion equation in order parameter Q 

[1-3] (in the Laplace space s):
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Where D(Q,s) represents the frequency dependent diffusion coefficient. 

While, U(Q,s)=βF(Q)+log(D(Q,s)/D(Q,s=0)) represents the 'effective free 

energy' (note that, F(Q) means the free energy of the binding complex 

system at Q). β is 1/kBT, Pi(Q) represents the initial condition for P(Q;  

t=0), and is the Laplace transform of P(Q,t): ( , )P Q s%

, which is  the probability of the binding 
0

( , ) exp[ ] ( , )P Q s st P Q t dt


 %

complex at Q and time t. Here, the diffusion coefficient D(Q, s) relies on 

frequency s and order parameter Q. It can be written as: 

 (21)
1( , ) ( ) / ( )R R

RD Q s Q Q
R s R s 

where s represents the Laplace transform variable over time t. The 

average 
is taken over f(R,Q),which is the probability distribution R

function derived from the transition rate R from a binding state with the 

specific order parameter Q to its neighboring binding states [1-3]. 

As we know, the binding dynamics depends on thermodynamics 

driving force and the kinetic diffusion. The equation of the latter can be 

integrated to give the mean first passage time :
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Qb~1 means that the native binding state is reached. One can set the 



boundary conditions for the equation as a reflecting one at Q~0,

, 
where the binding complex 0[ ( , ) ( , ) ( , )] | 0QP Q s U Q s P Q s

Q Q 

 
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 
% %

corresponds to the non-native binding states while an absorbing one at Q 

= Qb, , where the binding complex is in the native binding ( , ) 0bP Q s %

states. The first passage time to reach Qb (that is, the time for the random 

walker visiting order parameter Qb for the first time) will be used as a 

representative and typical time scale for binding.

For the binding complex, the RMSD (Root Mean Square Deviation) 

can be also viewed as order parameter. Thus, the RMSD similar to the Q 

depicts the whole binding process towards the global native binding state 

along the binding energy landscape. Similarly, we can start with a general 

kinetic master equation, by assuming the local connectivity, then derive a 

diffusion equation [1-7]:
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where P(RMSD,t) represents the probability of the binding complex with 

specific RMSD at time t, D(RMSD) represents the diffusion coefficient 

and F(RMSD) represents the corresponding free energy of the complex 

system at RMSD. Actually, the diffusion coefficient can be essentially 

viewed as the average of time leaving the local minimum site. The 

problem about the kinetics of the binding can be converted into one 

dimensional diffusion for RMSD. The diffusion equation can be also 



integrated to give the MFPT:
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RMSDi~1 A means that where the native binding state is reached. One 

can set the boundary conditions for the equation as a reflecting one at 

RMSDi,
,
 [ ( , ) ( ) ( , )] | 0

iRMSD RMSDP RMSD t F RMSD P RMSD t
RMSD RMSD 

 
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 

where the binding system is in native state, while an absorbing one at 

RMSD=RMSDf, P(RMSDf,t)=0, where the binding system is in the non-

native states. The absorbing boundary condition similar to the order 

parameter Q is chosen.
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III. The distributions of equilibrium constant and kinetics

According to the probability theory and statistics, a log-normal 

distribution is a continuous probability distribution of a random variable 

whose logarithm is normally distributed. Thus, if the random variable X 

is log-normally distributed, then the distribution of Y (Y= log(X)) is a 

normal distribution. In other words, if Y is normally distributed, then X 

(X= exp(Y)) has a log-normal distribution. Therefore, one can directly 

derive the distribution of equilibrium constant K (logK= Fn-Fun/RT) 

according to the free energy distribution. Since the logarithm of the 

equilibrium constant is directly related to the free energy difference 



between the native and non-native states (the non-native states are normal 

distributed while the native state is relatively narrowly distributed). 

Furthermore, the aforementioned distribution function of free energy has 

been determined as Gaussian in this study, one can easily obtain the 

distribution function of the equilibrium constant K as log-normal. 

Meanwhile, as mentioned above, the time scale τ can be expressed as 

log(τ/τ0)=F#-Fun/T, we can also obtain the corresponding distribution 

of binding kinetics based on the distribution of free energy.

As we discussed previously in the section II, we have obtained a 

simple approximate expression for MPFT. Next, we will give the detailed 

procedure to get the FPT (time scale or kinetics) distribution. First, one 

has the following relation for the FPT distribution function :( )FPTP 
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The moments of the FPT distribution function are calculated from the 

following relation:
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If we make a series expansion of  and ( , )G s% 1/ ( , )D s
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and the generalized Fokker-Planck equation 
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above in the section II (Eq.4) will become
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(8)

by matching each coefficient of sn in Eq.4 and Eq.5. Therefore, one can 

calculate  recursively. Meanwhile, one can also solve the intergral ( )nG %

Eq. 15 in the section II directly for , and by the observation that ( , )G s%

(9)
~

( ) 1 ( )FPTP s s s  %

Where  and  are Laplace transforms of  and , ( )FPTP s%
~

( )s ( )FPTP  

respectively, we can investigate  by studying the behavior of ( )FPTP 

. To solve Eq. 15 in the section II numerically, one first replaces ( )FPTP s%

the integrations by discrete summations. Because the equation is linear in 

, one can solve  in the discrete  space by a matrix ( , )G s% ( , )G s% 



inversion technique. In the discrete version this equation (Eq. 15 in the 

section II) becomes[1]

(10)2

,
( )i

j k
G   
r 1ˆ

iiK
 1ˆ

iiD


2
ˆ

ijI ˆ
jjK 1

ˆ
jkI 0( )k ksG n

r r

Where the integral operators become matrices  =1 if i>j, and =0 
1

ˆ
ijI 1

ˆ
ijI

if i<j. =1 if i>j, and =0 if i<j.  i, j, and k are discrete labels of the 
2

ˆ
ijI 2

ˆ
ijI

order parameter.  and  are diagonal matrices with non-zero elements K̂ D̂

 and , respectively.  and  are vectors of elements  ( )iK  ( , )iD s G
r

0nr ( , )iG s%

and . With these notations one can easily get0 ( )in  ˆ(G D
r

K̂  2̂sI K̂ 1̂I
1) 2̂I

.  In our calculations we make the matrix inversion with a K̂ 1̂I 0nr

Gaussian elimination method with scaled-column pivoting, and the 

results do not change wildly with the number of grids we choose in the 

discrete space, so we conclude this is a stable procedure for solving 

 and therefore .( , )G s% ( )FPTP s%

Except for the mathematical transition and the solving procedure given 

above, some previous studies have characterized the FPT and its 

distribution based on analytical theory and simulation studies [1-5]. 

Bryngelson and P. G. Wolynes had discussed some properties of 

distribution of folding kinetics [2]. In addition, Chi-Lun Lee and Jin 

Wang analytically studied the fluctuations and high order moments of the 

FPT to infer the corresponding distribution by exploring the kinetics of 

protein folding. It was found that for temperatures well above T0, the 

conformation dynamic process is self-averaging and its FPT distribution 



obeys a Poisson distribution. But when the temperature is lower, the 

fluctuations start to diverge. This means that the actual conformation 

dynamic process may happen on multiple time scales, and the non-self-

averaging behavior emerges. In this case, the full distribution of the FPT 

is required in order to characterize the system. From analytical analysis 

the distribution of FPT turns out to be close to a Levy distribution, which 

has a power-law tail for long time [1]. 

The authors had calculated the moments  of the FPT distribution n

function [1]. Using  as an example, the authors obtaind a V shape 2

curve for each setting of with the minimum of the curve having a / 

temperature close to T0. Similar to the behavior of , at low temperature 

 is only dependent on , and in the high-temperature regime it is 2 /T

mainly dependent on . The same results are also obtained for higher /T

moments. Furthermore, by exploring the behavior of the reduced second 

moment, , the authors find that the reduced second moment starts 22 / 

to diverge at temperature around T0, where MFPT is at its minimum. The 

degree of divergence increases rapidly as temperature drops below T0. 

This indicates that the average is not a good representative of the system 

and a long tail in the FPT distribution is developed. The intermittency 

where rare events make great contribution occurs. The divergence of the 

second moment also shows that the dynamics is exhibiting nonself-

averaging behavior.



From the study of higher moments, the authors find at high temperature 

the relationship . Therefore, the FPT distribution function is ! nn n 

Poissonian in the high-temperature regime. But when T<T0, it is hard to 

get more information from the moments because of their diverging 

behavior. On the other hand, the folding dynamics can be also studied by 

solving the linear integral Eq. 15 in the section II directly by making the 

inversion of the linear operator. The authors have also investigated the 

behavior of the FPT distribution function in the Laplace–transformed 

space. The results show that for T <T0   decays slowly over ( )FPTP s%

decades, which suggests that the usual numerical Laplace inversion 

techniques cannot be applied. And, the authors further find that there is 

approximately a linear relation over several orders of magnitude in s (see 

Fig. 6 in reference 1). This indicates that for T<T0 can be ( )FPTP s%

approximated by a stretched exponential which is the ( ) cs
FPTP s e

%

Laplace transform of the Le´vy distribution in the time space. Then by the 

transform, the authors derive   lies 1
1

1 ( ) ( 1)( ) sin( )
1

n

FPT n
n

c nP n
n

 
 






  
 

 

between 0 and 1. From the asymptotic property of the Le´vy distribution 

function the authors learn that for large . And the (1 )( ) ~FPTP     

calculation results show that decreases when the temperature decreases.

Furthermore, Zhou et.al. had performed more than 22000 folding 

kinetic simulations to study conformational dynamics of the second β-

hairpin fragment of protein G. The authors found that the MFPT has a 



U(or V)-shaped dependence on the temperature and becomes smaller as 

the energy bias gap increases. Above a kinetic transition temperature Topt 

*, the MFPT is well behaved; and the distribution of FPT tends to be log-

normal, as the temperature decreases, the distribution of FPT starts to 

become broader and has a power-law-like tail[3]. Wang et.al. also 

analytically explored the origin of power law distribution observed in 

single molecule conformational dynamics experiments. By establishing a 

kinetic master equation approach to statistically study the microscopic 

state dynamics, the results show that the underlying landscape with 

exponentially distributed density of states leads to power law distribution 

of kinetics ( ~τ-1-T/Tc). The exponential density of states emerges ( )FPTP 

when the system becomes glassy and landscape becomes rough with 

significant trapping under low temperatures. For the theoretical results the 

power law decay coefficient is monotonically dependent on temperature 

which can be tested from singular molecular experiments. This may 

bridge statistics from single molecule kinetic experiments and topography 

of conformational energy landscape [4]. Due to the high similarity 

between folding and binding, for the binding kinetics, Wang et.al, further 

analytically studied the diffusion dynamics on biomolecular interface 

binding energy landscape. The resulting MFPT has also U curve 

dependence on the temperature. The complex kinetics and the associated 

fluctuations give the clue of the underlying statistical distribution which 



reflects the topography of the binding energy landscape upon temperature 

changes [5]. In short, the analytical studies in conformational dynamics, 

protein folding and ligand binding all indicate the kinetics follow log-

normal distribution at higher temperatures and power law distribution at 

the low temperatures. These analytical studies formed a mathematical 

foundation and motivation to explore the distribution in kinetics in real 

ligand binding.  
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IVII. The fittings for the simulation results

The aim of nonlinear fitting is to get the parameter values which best 

describe the simulation results. The standard way of finding the best fit is 

to choose the parameters that would minimize the deviations of the the 

theoretical curve(s) from the experimental points. We call the method as 

chi-square minimization. 

                                        (1)

2
'

2

1

( , )n
i i

i i

Y f x 






   
 
 


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Where X=(x1, x2,…xk)' is the independent variables and θ= (θ1,θ2, 
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In the study, we can't find a suitable fitting function in the built-in 

function library of the Origin package. Then we have defined a new 

fitting function for use in nonlinear fitting based on our analytical model, 



defined as follows:

(3)
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We employ an iterative strategy to estimate the parameter values due to 

the difficulty of getting the explicit solutions to the equations. This 

process starts with some initial values, with each iteration, a  value is 2

computed and then the parameter values are adjusted so as to reduce the 

. When the  values computed in two successive iterations are small 2 2

enough(compared with the tolerance, herein, the tolerance is set to 1E-15, 

the maximum number of iterations is set to 50000), the fitting procedure 

has converged. We have also choosen the option ”reduced chi-square” 

during the fitting procedure. The Levenberg-Marquardt (L-M) algorithm 

is used to adjust the fitting parameter values in the above iterative 

procedure in the current study. This algorithm combines combining the 

Gauss-Newton method and the steepest descent method works for most 

cases. In order to get a good value for parameter initialization, the 

function peak_pos is used to estimate the peak's XY coordinate, peak's 

width, area .etc for the Gauss distribution. There are two methods to 

calculate the confidence intervals for parameters: Asymptotic-Symmetry 

method and Model-Comparison method in the Origin package. We 

applied the former to obtain asymptotic, symmetrical confidence intervals. 

All Curve-fittings are carried out with software Origin 



(www.originlab.com). We have listed the fitting reports for global fit 

including the Parameters of  Figure 2-4 (See also Figure S1-S24), 

Figure2: (the parameters of the fitting)
Equatio

n
y = y0+(A1*exp(-0.5*k1*(abs(x-xc1)+(xc1-x))))+(A3*exp(-0.5*k2*(abs(x-xc3)+(x-

xc3))))+(A2/(w*sqrt(PI/2)))*exp(-2*((x-xc2)/w)^2)
Adj.R-
Square

0.99568

Value Standard Error
Count A1 246.97799 154.4804
Count k1 1.88664 0.71839
Count xc1 -7 0.29012
Count A3 274.33063 160.24916
Count k2 4 6.95249
Count xc3 -5.5 0.31448
Count y0 -271.90891 162.56591
Count A2 1200.11898 349.83219
Count w 1.06054 0.14476
Count xc2 -6.02538 0.01637

Figure3：(the parameters of the fitting)
Equatio

n
y = y0+(A1*exp(-0.5*k1*(abs(x-xc1)+(xc1-x))))+(A3*exp(-0.5*k2*(abs(x-xc3)+(x-

xc3))))+(A2/(w*sqrt(PI/2)))*exp(-2*((x-xc2)/w)^2)
Adj.R-
Square

0.99968

Value Standard Error
Count A1 384.23565 114.75243
Count k1 1.1516 0.14429
Count xc1 -11.47884 0.0452

http://www.originlab.com/


Count A3 392.46673 111.6123
Count k2 4 3.4372
Count xc3 -9.11778 0.10152
Count y0 -390.15399 110.93278
Count A2 1426.54232 404.84755
Count w 1.68243 0.19921
Count xc2 -10.14335 0.01006

Figure4：(the parameters of the fitting)
Timeoff：

Equatio
n

y = y0+(A1*exp(-0.5*k1*(abs(x-xc1)+(xc1-x))))+(A3*exp(-0.5*k2*(abs(x-xc3)+(x-
xc3))))+(A2/(w*sqrt(PI/2)))*exp(-2*((x-xc2)/w)^2)

Adj.R-
Square

0.98077

Value Standard Error
Count A1 24.76535 24.524
Count k1 4 7.71118
Count xc1 6 0.10519
Count A3 22.77664 24.40812
Count k2 4 9.13005
Count xc3 6.504 0.09885
Count y0 -31.26799 34.4957
Count A2 20.08047 1.81771
Count w 0.18409 0.01697
Count xc2 6.10355 0.00656

Timeon：

Equatio
n

y = y0+(A1*exp(-0.5*k1*(abs(x-xc1)+(xc1-x))))+(A3*exp(-0.5*k2*(abs(x-xc3)+(x-
xc3))))+(A2/(w*sqrt(PI/2)))*exp(-2*((x-xc2)/w)^2)

Adj.R-
Square

0.94671

Value Standard Error
Count A1 36.08573 684.33881
Count k1 1.38737 31.1384
Count xc1 3.84055 0.27757
Count A3 10.69652 151.35361
Count k2 4 88.21797



Count xc3 4.33465 0.44884
Count y0 -40.84552 700.78675
Count A2 18.80556 3.85953
Count w 0.24076 0.03814
Count xc2 3.97482 0.01146

V．The force field used by AutoDock

In this study, the Autodock 4.2 was applied to perform the docking 

simulations. The AutoDock 4.2 uses a semi-empirical free energy force 

field to evaluate conformations during docking simulations. The force 

field was parameterized using a large number of protein-inhibitor 

complexes for which both the structures and inhibition constantsor Ki, are 

available. The force field also includes an updated charge-based 

desolvation term, improvements in the directionality of hydrogen bonds, 

and several improved models of the unbound state. The AutoDock uses a 

computationally (relatively) inexpensive "hybrid" force field that contains 

terms based on molecular mechanics as well as empirical terms. The 

prediction of absolute binding energies may be less accurate compared to 

more computationally expensive, purely force field-based methods such 

as molecular dynamics, but this semi-empirical approach is considered as 

well-suited for the relative rankings.

The AutoDock semi-empirical force field includes intra-molecular 

terms, a "full" desolvation model, and also considers directionality in 

hydrogen bonds. The conformational entropy is calculated from the sum 



of the torsional degrees of freedom. Water molecules are not modeled 

explicitly though, but pair-wise atomic terms are used to estimate the 

water contribution (dispersion/repulsion, hydrogen bonding, electrostatics, 

and desolvation), where weights are added for calibration. The evaluation 

step in a nutshell: firstly, calculate the energy of ligand and protein in the 

unbound state. Secondly, calculate the energy of the protein-ligand 

complex. Then take the difference between 1 and 2.

Where P refers to the protein, L refers to the ligand, V are the pair-wise 

evaluations mentioned above, and ΔSconf denotes the loss of 

conformational entropy upon binding (R Huey et al., 2006 1).
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