Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Figure S1.Isosurface plots of selected frontier MOs for $[Co^{II}(corrin)]^+$ based on uBP86/6-
311G(d,p)TD-DFTcalculations.

	E((eV)	λ(nm)	f	Coeff.	Character		
Γ	$0_1 0$.45	2767.4	0.0000	100	$94(\beta) \rightarrow 95(\beta)$	$H(\beta) \rightarrow L(\beta)$	$d_{yz} + \pi \rightarrow d_z^2$
Γ	$0_2 0$.68	1834.9	0.0000	100	$93(\beta) \rightarrow 95(\beta)$	$H-1(\beta) \rightarrow L(\beta)$	$d_{xz}^{} + \pi \rightarrow \ d_z^{2}$
Γ) ₃ 1	.38	898.9	0.0007	99	$92(\beta) \rightarrow 95(\beta)$	$H-2(\beta) \rightarrow L(\beta)$	$d_x^2 - y^2 \rightarrow d_z^2$
Ε) ₄ 1	.52	816.6	0.0003	99	$91(\beta) \rightarrow 95(\beta)$	$H-3(\beta) \rightarrow L(\beta)$	$\pi \rightarrow d_z^2$
Γ	b ₅ 1	.73	716.0	0.0005	39	$95(\alpha) \rightarrow 96(\alpha)$	$H(\alpha) \rightarrow L(\alpha)$	$d_{yz} + \pi \to \pi^*$
					61	$94(\beta) \rightarrow 96(\beta)$	$\mathrm{H}(\beta) \to \mathrm{L}{+}1(\beta)$	$d_{yz}^{} + \pi \rightarrow \pi^{*}$
Γ	b ₆ 2	.13	583.3	0.0002	99	$90(\beta) \rightarrow 95(\beta)$	$\mathrm{H}\text{-}4(\beta) \to \mathrm{L}(\beta)$	$\pi + d_{yz} \rightarrow d_z{}^2$
Г) ₋ 2	13	582.2	0.0034	8	93(B) → 96(B)	$\text{H-1}(\beta) \to \text{L+1}(\beta)$	$d_{xz}\!\!+\!\!\pi \rightarrow \pi^*$
L	<i>•</i> / <i>2</i>	.15	562.2	0.0054	92	$94(\alpha) \rightarrow 96(\alpha)$	$\text{H-1}(\alpha) \rightarrow \text{L}(\alpha)$	$d_{xz} + \pi \rightarrow \pi^*$
							$H(\alpha) \rightarrow L+1(\alpha)$	$\pi \rightarrow \pi^*$
Γ	$D_8 = 2$.34	529.2	0.0002	37	$95(\alpha) \rightarrow 97(\alpha)$	TT() T (1()	
					15	$95(\alpha) \rightarrow 97(\alpha)$	$H(\alpha) \rightarrow L+I(\alpha)$	$d_{yz} + \pi \rightarrow d_{xy} - n$
					38	$94(\beta) \rightarrow 98(\beta)$	$H(\beta) \rightarrow L+3(\beta)$	$\pi \rightarrow \pi^*$
					11	$94(\beta) \rightarrow 98(\beta)$	$H(\beta) \rightarrow L+3(\beta)$	$d_{yz} + \pi \rightarrow d_{xy}$ -n
							$H(\alpha) \rightarrow L+1(\alpha)$	$d_{vr} + \pi \rightarrow d_{vv} - n$
Ľ	b ₉ 2	.37	523.9	0.0000	47	$95(\alpha) \rightarrow 97(\alpha)$	TT() T . 1()	uyz n , uxy n
					12	$95(\alpha) \rightarrow 97(\alpha)$	$H(\alpha) \rightarrow L+I(\alpha)$	$\pi \rightarrow \pi^*$
					26	$94(\beta) \rightarrow 98(\beta)$	$H(\beta) \rightarrow L+3(\beta)$	$d_{yz} + \pi \rightarrow d_{xy} - n$
					15	$94(\beta) \rightarrow 98(\beta)$	$H(\beta) \rightarrow L+3(\beta)$	$\pi \to \pi^*$
D	10 2	.38	520.8	0.0006	4	$95(\alpha) \rightarrow 96(\alpha)$	$H(\alpha) \rightarrow L(\alpha)$	$d_z^2/d_{yz} + \pi \rightarrow \pi^*$
					96	$93(\beta) \rightarrow 97(\beta)$	$\text{H-1}(\beta) \to \text{L+2}(\beta)$	$d_{x^2-y^2}^{2} \rightarrow \pi^*$

Table S1. The 10 lowest excited states of $[Co^{II}(corrin)]^+$, obtained from TD-DFT/BP86/6-311G(d,p) calculations.

Figure S2. Isosurface plots of selected frontier MOs for $[Im-Co^{II}(corrin)]^+$ based on uBP86/6-311G(d,p) calculations.

	E(eV)	λ(nm)	f	NTO	TDDFT		
	. ,		5	Coeff.	Character		
D_1	1.40	884.9	0.0001	31	$113(\alpha) \rightarrow 114(\alpha)$	$H(\alpha) \rightarrow L(\alpha)$	$d_z^2 + \pi_{Im} \rightarrow \pi^*$
				69	$112(\beta) \rightarrow 114(\beta)$	$\mathrm{H}(\beta) \to \mathrm{L}{+}1(\beta)$	$d_{yz} + \pi \rightarrow d_z{}^2 + {\pi_{Im}}^*$
D_2	1.50	826.3	0.0008	36	$112(\alpha) \rightarrow 114(\alpha)$	$H-1(\alpha) \rightarrow L(\alpha)$	$d_{yz} + \pi \rightarrow \pi^*$
				64	$112(\beta) \rightarrow 113(\beta)$	$H(\beta) \rightarrow L(\beta)$	$d_{yz} + \pi \rightarrow \pi^*$
D_3	1.59	779.5	0.0010	17	$113(\alpha) \rightarrow 114(\alpha)$	$H(\alpha) \rightarrow L(\alpha)$	$d_z{}^2 + \pi_{Im} \rightarrow \pi^*$
				83	$111(\beta) \rightarrow 113(\beta)$	$H-1(\beta) \rightarrow L+1(\beta)$	$d_{xz}\!\!+\!\!\pi \rightarrow \ d_z{}^2 \!+\! \pi_{Im}{}^*$
D_4	1.65	752.0	0.0026	52	$113(\alpha) \rightarrow 114(\alpha)$	$H(\alpha) \rightarrow L(\alpha)$	$d_z^2 + \pi_{Im} \rightarrow \pi^*$
				48	$112(\beta) \rightarrow 114(\beta)$	$H(\beta) \rightarrow L+1(\beta)$	$d_{yz} + \pi \rightarrow \ d_z{}^2 + \pi_{Im}{}^*$
D_5	1.81	683.3	0.0028	8	$111(\alpha) \rightarrow 114(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{xz} + \pi_{Im} \rightarrow \pi^*$
				92	$111(\beta) \rightarrow 113(\beta)$	$H-1(\beta) \rightarrow L+1(\beta)$	$d_{xz} + \pi_{Im} \rightarrow \pi^*$
D_6	2.13	583.6	0.0094	25	$112(\alpha) \rightarrow 114(\alpha)$	$H-1(\alpha) \rightarrow L(\alpha)$	$d_{yz} + \pi \rightarrow \pi^*$
				75	$110(\beta) \rightarrow 113(\beta)$	$H-2(\beta) \rightarrow L+1(\beta)$	$d_x{}^2y{}^2+\pi \rightarrow d_z{}^2+\pi_{Im}{}^*$
D_7	2.15	576.8	0.0045	57	$113(\alpha) \rightarrow 115(\alpha)$	$\mathrm{H}\left(\alpha\right) \to \mathrm{L+1}(\alpha)$	$d_{z2 +}\pi_{Im} \rightarrow d_{xy}-n$
				34	$111(\alpha) \rightarrow 114(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{xz} + \pi \rightarrow \pi^*$
				8	$110(\beta) \rightarrow 113(\beta)$	$H-2(\beta) \rightarrow L(\beta)$	$d_{x^{2}-y^{2}} \rightarrow \pi^{*}$
D_8	2.17	570.5	0.0062	14	$112(\alpha) \rightarrow 114(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{yz} + \pi \to \pi^*$
				86	$110(\beta) \rightarrow 113(\beta)$	$H-2(\beta) \rightarrow L(\beta)$	$d_{x^{2}-y^{2}}+\pi \rightarrow \pi^{*}$
D_9	2.22	557.6	0.0004	62	$112(\alpha) \rightarrow 115(\alpha)$	$H-1(\alpha) \rightarrow L+1(\alpha)$	$d_{yz} + \pi \rightarrow d_{xy} - n$
				38	$112(\beta) \rightarrow 116(\beta)$	$H(\beta) \rightarrow L+3(\beta)$	$d_{yz} + \pi \rightarrow d_{xy} - n$
D_{10}	2.28	543.5	0.0026	54	$111(\alpha) \rightarrow 114(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{xz}^{} + \pi \rightarrow \pi^{*}$
				33	$111(\alpha) \rightarrow 115(\alpha)$	$\text{H-2}(\alpha) \to \text{L+1}(\alpha)$	$d_{xz} + \pi \rightarrow d_{xy}$ -n
				14	$112(\beta) \rightarrow 114(\beta)$	$\mathrm{H}(\beta) \to \mathrm{L}{+}1(\beta)$	$d_{yz} + \pi \rightarrow d_z^2 + \pi^*$

Table S2 The 10 lowest excited states of $[Im-Co^{II}(corrin)]^+_{(2.13 \text{ Å min})}$ obtained from TDDFT/BP86/6-311G(d,p) calculations.

		donor MO	
	3d _{yz}	$3d_{xz}$	$3d_{x^2-v^2}$
MCD expt ^a	< 1.16 eV (9000cm ⁻¹)	< 1.16 eV (9000cm ⁻¹)	1.68 eV (16500 cm ⁻¹)
TDDFT(4coord)	0.45 eV	0.68 eV	1.38 eV
TDDFT _(LF 5-coord)	0.72 eV	0.91 eV	1.55 eV
CASSCF/ MC-XQDPT2	0.01 eV	0.01eV	1.35 eV
SORCI a	0.03 eV (256 cm ⁻¹)	0.26 eV (2154 cm ⁻¹)	1.16 eV (9389 cm ⁻¹)

Table S3. Comparison of Co $3d \rightarrow 3d_z^2$ transition energies of Co^{II}(corrin)⁺ obtained from experimental and computed results through MCD spectrum, TDDFT, CASSCF/MC-XQDPT2 and SORCI approaches.

^a Data from ref. 12.

		donor MO	
	3d _{yz}	$3d_{xz}$	$3d_{x^{2}-y^{2}}$
MCD expt ^a	1.79 eV (14470cm ⁻¹)	1.79 eV (14470cm ⁻¹)	2.19 eV (17700 cm ⁻¹)
TDDFT _(trunc.)	1.40 eV	1.59 eV	2.13 eV
TDDFT _(full)	1.27 eV	1.42 eV	2.08 eV
TDDFT _(LF)	0.72 eV	0.91 eV	1.55 eV
CASSCF/ XMCQDPT2	0.90 eV	0.90 eV	2.09 eV
- 10 0.01			

Table S4. Comparison of Co $3d \rightarrow 3d_{z^2}$ transition energies of Im-[Co^{II}(corrin)]⁺ obtained from experimental and computed results through MCD spectrum, TDDFT, CASSCF/XMCQDPT2 and SORCI approaches.

^{*a*} read from ref. 24.

	E(eV)	λ(nm)	f	Coeff.	TDDFT		
			-		Character		
D_1	0.83	1495.1	0.0007	99	$112(\alpha) \rightarrow 113(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_z^2 + \pi_{Im} \rightarrow \pi^*$
				1	$91(\beta) \rightarrow 96(\beta)$	$\text{H-3}(\beta) \to \text{L+1}(\beta)$	$d_{yz}^{}+\pi \rightarrow d_z^{2}^{}+\pi_{Im}^{}^{*}$
D_2	1.50	829.3	0.0004	34	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$\pi \rightarrow \pi^*$
				66	$91(\beta) \rightarrow 96(\beta)$	$H-3(\beta) \rightarrow L+1(\beta)$	$\pi \rightarrow \pi^*$
D_3	1.54	805.7	0.0016	92	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_z^2 + \pi_{Im} \rightarrow d_{xy}$ -n
				8	$91(\beta) \rightarrow 96(\beta)$	$H-3(\beta) \rightarrow L+1(\beta)$	$d_{yx} + \pi \rightarrow \pi^*$
D_4	1.69	731.9	0.0005	92	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_z^2 + \pi_{Im} \rightarrow \pi^*$
				8	$91(\beta) \rightarrow 96(\beta)$	$H-3(\beta) \rightarrow L+1(\beta)$	d_{yz} + π + π Im \rightarrow d_z^2 + π
D_5	1.77	699.3	0.0018	11	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{xz}\!\!+\pi +\pi_{Im}\to\pi^{*}$
				89	$91(\beta) \rightarrow 96(\beta)$	$H-3(\beta) \rightarrow L+1(\beta)$	$d_{xz}\!\!+\pi +\pi_{Im}\to\pi^{*}$
D_6	2.04	608.1	0.0007	6	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{xz}\!\!+\pi +\pi_{Im}\to\pi^{*}$
				94	$91(\beta) \rightarrow 96(\beta)$	$H-3(\beta) \rightarrow L+1(\beta)$	$d_{yx} + \pi \rightarrow d_z^2 + \pi$
D_7	2.14	578.6	0.0041	60	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{xz}\!\!+\pi +\pi_{Im}\to\pi^{*}$
				40	$91(\beta) \rightarrow 96(\beta)$	$H-3(\beta) \rightarrow L+1(\beta)$	$d_z^{2/}d_{yz}$ + π + $\pi_{Im} \rightarrow d_z^{2}$ + π
	2.16	574.9	0.0031	28	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{xz}\!\!+\pi +\pi_{Im}\to\pi^{*}$
D_8				72	$91(\beta) \rightarrow 96(\beta)$	$H-3(\beta) \rightarrow L+1(\beta)$	$d_{x^2-y^2} \rightarrow \pi^*$
	2.18	568.7	0.0061	8	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{yx} + \pi \rightarrow \pi^*$
D_9				68	$91(\beta) \rightarrow 96(\beta)$	$H-3(\beta) \rightarrow L+1(\beta)$	d_{yx} + $\pi \rightarrow d_z^2$ + π_{Im}
				24	$91(\beta) \rightarrow 96(\beta)$	$\text{H-3}(\beta) \to \text{L+1}(\beta)$	$d_{x^2-y^2} \rightarrow \pi^*$
D_{10}	2.24	553.0	0.0044	61	$93(\alpha) \rightarrow 96(\alpha)$	$H-2(\alpha) \rightarrow L(\alpha)$	$d_{yx} + \pi \rightarrow d_{xy} - n$
				39	$91(\beta) \rightarrow 96(\beta)$	$\text{H-3}(\beta) \to \text{L+1}(\beta)$	$d_{yx} + \pi \rightarrow d_{xy} - n$

Table S5. The 10 lowest excited states $[Im-Co^{II}(corrin)]^+_{(1.85 \text{ Å})}$ obtained from TDDFT/BP86/6-311G(d,p) calculations.

NTO	E(eV)	NTO Coeff	f	α hole	α particle	β hole	β particle
Dı	0.83	99 (α) 1 (β)	0.0007	$d_z^2 + \pi_{Im}$	π*	d_{r}	$d^2 + \pi m^*$
D ₂	1.50	34 (α) 66 (β)	0.0004	π	π*	π	
D ₃	1.54	92 (α) 8 (β)	0.0016	$d_z^2 + \pi_{Im}$	d _{xy} -n	$d_{yx}+\pi$	π*
D ₄	1.69	92 (α) 8 (β)	0.0005	$d_z^2 + \pi m^*$		d _{yz} + π + π Im	$d_z^2 + \pi \text{ Im}^*$
D5	1.77	11 (α) 89 (β)	0.0018	$d_{xz} + \pi + \pi_{Im}$	π*	d _{xz} + π + π _{Im}	

Figure S3. NTOs for $[Im-Co^{II}(corrin)]^+$ (1.85 A)

NTO	eV	NTO Coeff. & TDDFT	f	α hole	α particle	β hole	β particle
D ₁	1.27	$6\%(\alpha) \text{ H} \rightarrow \text{L}$ $94\%(\beta) \text{ H} \rightarrow \text{L}$	0.0001	$d_z^2 + \pi_{\rm im}$	π	$d_{yz}+\pi$	$d_z^2 + \pi$
D ₂	1.42	100 %(β) H-1 → L	0.0001				$d_z^{2+\pi}$
D ₃	1.48	37% (α)H-1 \rightarrow L 63% (β) H \rightarrow L+1	0.0005	$d_{yz} + \pi_{im}$	π*	$d_{yz}+\pi$	π^*
D ₄	1.72	91% (α) H \rightarrow L 8% (β)	0.0074	$d_z^{2+}\pi_{\rm Im}$	π	$d_{yz} + \pi$	$d_z^{2+}\pi^*$
D ₅	1.78	14 % (α)H-2→L 85 % (β)H-2→L+1	0.0023	$d_{xz} + \pi$	π	$d_{xx}+\pi$	π
D ₆	2.00	14% (α)H-1→L 86 % (β)H-2→L	0.0079	d _{y2} +π	π	d _{x²-y²}	dz ²

Figure S4. NTOs of the first 10 TDDFT excited states of the $[Im-Co^{II}(corrin)]^+$ full structure at the BP86/6-311G (d,p) level of theory.

D ₇	2.08	11% (α) H-3 \rightarrow L 89% (β)H-2 \rightarrow L+1 *H-3= π + d _z ²	0.0027	$d_{y}+\pi$	π	$d_{x^2-y^2+\pi}$	π+d,2
D ₈	2.15	60% (α)H-2→L 25% (β1) 16% (β2)	0.0080		π	$d_{r^2,v^2+d_{vr}+\pi}$	$d_z^{2+}\pi^*$
						π	
D ₉	2.18	40% (α)H-1→L+1 35% (β1)H-3→L 24% (β2)	0.0064	d _{yz} +π	d _{xy} -n	+ d _z ² π	dz ²
						$d_{z}^{2+}d_{vz}^{+}\pi$	d_{xy} -n + π^*
D ₁₀	2.23	36% (α1)H-1→L+1 26% (α2)H-2→L 22% (β1)H→L+4 14% (β2)H-3→L	0.0018	d _{yz} +π	d _{xv} -n	$d_{vz} + \pi$	d _{xy} -n
				$d_{v}+\pi$	π*	$\pi + d_z^2$	dz ²

Figure S5. Frontier orbitals of the cob(II)alamin full structure at the BP86/6-311G(d,p) level (left panel), and the BP86/SDD level (right panel).

Figure S6. Frontier orbitals of the cob(II)alamin full structure at the BP86/SDD level of theory.

NTO	eV	NTO Coeff	f	α hole	α particle	β hole	β particle
Dı	1.37	93% (β) 7% (α)	0.0001	$d_z^2 + \pi_{\rm im}$	π	$d_{yz}+\pi$	$d_z^2 + \pi_{\rm Im}$
D ₂	1.46	62% (β) 38% (α)	0.0001	d _{yz} +π	π	$d_{yz}+\pi$	π
D ₃	1.53	96% (β) 4% (α)	0.0005	$d_z^2 + \pi_{\rm im}$	π*	$d_{x}+\pi$	$d_z^2 + \pi^*$
D_4	1.76	80%(α) 20%(β)	0.0074	$d_z^2 + \pi + \pi_{\rm im}$	π	$d_{xz} + \pi$	
D5	1.84	80%(α) 20%(β)	0.0023	$d_z^2 + d_{xz} + \pi_{im}$	π		π

Figure S7. NTOs of the first 5 TDDFT excited states of cob(II)alamin at the BP86/SDD level of theory.

NTO	eV	NTO	f	a hole	α particle	β hole	β particle
D ₁₉	2.71	46% (α,1) 29 % (β,1)	0.0276	$d_{x^2-y^2} + \pi$	π*	$d_{x2-y2} + \pi$	$d_{22} + \pi_{Im}^*$
		25% (α,2)		$d_z^2 + \pi$	π*		
D ₂₉	2.93	63% (α,1) 19% (β,1)	0.0377	$\pi_{Im} + p$	π^*	$\pi_{\rm Im}$	π^*
		19% (α,2)		$\pi + d_z^2$	π*		
D ₆₁	3.39	78 % (β) 22 % (α)	0.0263	$d_{xz} + \pi_{Im}$	π^*	$d_{xz} + \pi$	π*
D ₁₄₄	3.95	60 % (β) 40 % (α)	0.0923	π _p	π*	$d_{x^2-y^2} + \pi$	d _{xy} -n

Figure S8. NTOs of selected TDDFT excited states of the cob(II)alamin full structure at the BP86/SDD (d,p) level of theory.

NTO	eV	NTO Coeff.	f	a hole	α particle	β hole	β particle
D ₂₃	3.00	32 % (α,1) 30 % (β,1)	0.0160	$\pi + d_z^2$	π*	d _{x²-y²}	d _{xy} -n
		17 % (α,2) 30 % (β,2)		$d_z^2 + \pi$	π*	π	d ₂₂ + π*
D ₃₃	3.38	75 % (β) 25 % (α)	0.0500	d _{x²-y²}	d _{xy} -n	d _{xz} +π	π*
D45	3.80	89 % (α) 11 % (β)	0.0689	$d_{xz} + \pi + \pi_{Im}$	π*	d _{xz} +π	π*
D ₅₆	4.09	37 % (α,1) 33 % (β,1)	0.2433	$\pi + \pi_{lm} + d_z^2$	π*	$\pi + \pi_{\rm Im} + d_z^2$	π*
		13 % (α,2) 18 % (β,2)		π	π^*	π	

Figure S9. NTOs of selected TDDFT excited states of the $[Im-Co^{II}(corrin)]^+_{(min, 2.13 \text{ Å})}$ model at the BP86/6-311g (d,p) level of theory.

NTO	eV	NTO Coeff.	f	a hole	α particle	β hole	β particle
D ₁₇	2.73	58 % (α) 42 % (β)	0.0455	$d_z^2 + \pi$		$d_z^{2+\pi}$	
D ₂₆	3.09	66 % (α) 34 % (β)	0.0953	$\pi + d_z^2$	π*	d _{x²-y²}	π*
D ₃₃	3.44	74 % (β) 26 % (α)	0.0520	$\pi + d_z^2$	d _{xy} -n	π Im	$d_z^2 + \pi_{\rm Im} *$
D ₅₄	4.06	40 % (α,1) 33 % (β,1)	0.2472	$\pi + d_z^2$	π	$+d_z^2$	π*
		15 % (α,2) 12 % (β,2)		T. + dur	π*	π	d + T*

Figure S10. NTOs of selected TDDFT excited states of the $[Im - - Co^{II}(corrin)]^+_{(LF, 2.80 \text{ Å})}$ model at the BP86/6-311g (d,p) level of theory.