

1. Data for ΔG calculations

Table S1. Total energies for a isolated H atom E(H), a H atom in gas molecular state ($E(H_2)/2$), and their difference $\Delta E_{\rm cp}$. $E_{\rm ZPE}({\rm gas})$ and $E_{\rm ZPE}({\rm ads})$ are the zero point energies of a H atom in gas molecular state and adsorbed state, respectively. The calculated $E_{\rm ZPE}({\rm gas})$ is 0.137 eV, in good agreement with the previous value of 0.135 eV.¹ T $\Delta S_{\rm H}$ is obtained from the literature.¹

	E(H)	$E(H_2)/2$	$\Delta E_{ m cp}$	$E_{\rm ZPE}({\rm gas})$	$E_{\rm ZPE}({\rm ads})$	$T\Delta S_{\rm H}$	ΔE_{ZPE} - $\mathrm{T}\Delta \mathrm{S}_{\mathrm{H}}$
1H-MoS ₂	-0.000488	-3.380413	3.380	0.137	0.194	-0.205	0.262
$1T$ -MoS $_2$					0.228		0.296
1H-NbS ₂					0.229		0.297
1T-NbS ₂					0.229		0.297

All the total energies calculated by VASP are with respect to the atomic energies in reference configuration (*i.e.* the configuration for which the pseudopotential is generated). Consequently, E(H) should be as small as possible. The small value of -0.000488 eV for E(H) indicates the high accuracy of the PAW potential. In addition, it is seen that $E_{ZPE}(ads)$ is weakly dependent on different materials.

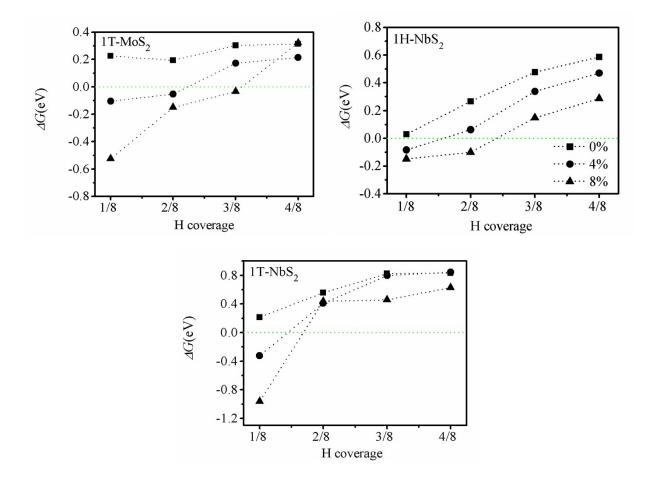


Fig. S1 (color online) H coverage dependent differential ΔG for monolayer 1T-MoS₂, 1H-NbS₂ and 1T-NbS₂ for biaxial tensile strain of 0% (squares), 4% (circles) and 8% (triangles). Only H coverage from 1/8 to 4/8 is considered.

Generally, ΔG increases with increasing H coverage for all the monolayer disulfides. For a given disulfide, the evolution of ΔG with H coverage, as indicated by dotted lines, may cross the green horizontal lines ($\Delta G = 0$). The coverage corresponding to the crossover is selected to be the max coverage of H (MCH) defined in the text. This may lead to an average error of ca. $\pm 1/16$ for the MCH.

REFERENCES

1. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *J. Electrochem. Soc.*, 2005, **152**, J23-J26.