Supplementary Information:

Exploration of functionalized graphene membranes for selective separating CO₂/N₂: a multi-scale computational study

Yong Wang,^a Qingyuan Yang,^b Jinping Li, *a Jiangfeng Yang, *a and Chongli Zhong ^b

^a Research Institute of Special Chemicals, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.

^b State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

*Corresponding authors:

E-mail:jpli211@hotmail.com,yangjiangfeng@tyut.edu.cn.

Fig. S1 The number profiles of permeated molecules for equimolar N_2/CO_2 mixture through the relaxed H-pore-13 graphene membranes at 298K, as a function of simulation time.

Fig. S2 Snapshots of the equimolar N_2/CO_2 mixture permeating through the relaxed H-pore-13 graphene membranes (a) before and (b) after a MD simulations time of 10 ns (C, gray or pink; N, blue or green; O, red or pink; H, white).

Fig. S3 The stable state and transition state for the CO_2 and N_2 gases passing through H-pore-13. (C, gray; N, blue, O, red; H, white).