Supplementary material: Additive polarizabilities in ionic liquids

Carlos ES Bernardes, Karina Shimizu and José Nuno Canongia Lopes Centro de Quimica Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Portugal Philipp Marquetand University of Vienna, Department of Theoretical Chemistry, Austria Esther Heid, Othmar Steinhauser, Christian Schröder^{a)} University of Vienna, Department of Computational Biological Chemistry, Austria

CONTENTS

Designed regression	2
Model of the excess electron	6
Computation of the atomic polarizabilities	8
References	9

^{a)}Electronic mail: christian.schroeder@univie.ac.at

DESIGNED REGRESSION

The Designed regression in MATHEMATICA¹ is a classical one-way analysis of variance (ANOVA) method.^{2–5} Basically, it decomposes data into statistically averaged contributions of some moieties. For example, the molecular volume $V_{\rm mol}$ of the ionic liquids under investigation is correlated via the Design matrix **X** with the atomic contributions of the constituting atoms, i.e. { $V_{\rm H}, V_{\rm B}, V_{\rm Csp^3}, V_{\rm Csp^2}, V_{\rm Csp}, V_{\rm N}, V_{\rm O}, V_{\rm F}, V_{\rm P}, V_{\rm S}, V_{\rm Cl}$ }.

This equation corresponds to Eq.(2) in the manuscript. The index in the upper right corner indicate the corresponding experimental data. For instance, ionic liquid 1 and 2 may be two measurements of 1-ethyl-3-methylimidazolium tetrafluoroborate from different scientific groups. In this case, $V_{\rm mol}^1$ and $V_{\rm mol}^2$ differ slighty from each other. However, the X-values are the very same for both ionic liquids 1 and 2 since the composition has not changed: $X_{\rm H}^1 = X_{\rm H}^2 = 11, X_{\rm B}^1 = X_{\rm B}^2 = 1, X_{\rm C(sp^3)}^1 = X_{\rm C(sp^3)}^2 = 3, X_{\rm C(sp^2)}^1 = X_{\rm C(sp^2)}^2 = 3, \ldots$ As a result, the Design matrix **X** has linearly dependent lines which results in a determinant of zero. Consequently, **X** cannot be inverted (which would have been difficult since **X** is also not a square matrix). Please also note, that we make no discrimination, if the atoms are part of the cation or anion.

The Designed Regression tries to find the optimal values $V_{\rm H}$, $V_{\rm B}$, ..., $V_{\rm Cl}$ to match the molecular volumes $V_{\rm mol}$ on the left hand side of Eq. (1) with the lowest possible mean-squared deviation as visible in Fig. 1.

		Estimate	SE	TStat	PValue	
ParameterTable -	H	5.91444	0.377247	15.6779	1.09092×10^{-48}	_
	Csp3	15.8402	0.796532	19.8865	3.28762×10 ⁻⁷²	
	Csp2	15.2741	0.370137	41.2659	6.80115×10^{-20}	3
	Csp	20.0398	1.41915	14.121	1.02365×10^{-40}	
	N	14.3484	0.914869	15.6835	1.01895×10^{-48}	
	[→] 0	9.27549	0.399537	23.2156	3.56658×10 ⁻⁹²	1
	В	18.1527	1.89715	9.56842	1.21608×10^{-20}	
	F	13.2603	0.417227	31.7819	1.98238×10^{-14}	5
	Р	22.99	2.6582	8.6487	2.68733×10^{-17}	
	S	37.2829	0.992203	37.5759	5.86125×10^{-18}	1
	Cl	26.0849	2.10029	12.4197	1.35846×10^{-32}	
RSquared $\rightarrow 0.999$	9566,Ad	ustedRSquare	$d \rightarrow 0.99956$,			
EstimatedVaria	nce \rightarrow 85.	.4161, ANOVATa	able→ ^{Model} Error U Total	DF 11 826 837	SumOfSq 1.62341×10 ⁸ 70553.7 1.62411×10 ⁸	MeanSq 1.4758 85.416

FIG. 1. Result of the Designed Regression on the molecular volumes of the 837 ionic liquids under investigation. U Total is the total number of experimental data and SE is the standard error for the atomic volumes which are the "Degrees of freedom" (DF).

FIG. 2. Comparison between experimental and computational molecular volumes.

Fig. 2 correlates experimental molecular volumes with the predictions based on the Designed regression values of the atomic volumes. The magenta line represents 100% agreement. The legend also contains linear regression of the corresponding ionic liquid classes. A slope of 1.0 and an axis intercept of 0.0 would correspond to 100% agreement.

In a second step, the Lorentz-Lorenz equation is used to compute experimental molecular polarizabilities.

$$\frac{n_{\rm D}^2 - 1}{n_{\rm D}^2 + 2} = \frac{4\pi}{3} \frac{\alpha_{\rm mol}}{V_{\rm mol}} \tag{2}$$

Since many groups report the density or the refractive index of an ionic liquid but seldom both values, the set of ionic liquids to compute the molecular volume differs from that to evaluate the molecular polarizabilities. Therefore, the values of $V_{\rm mol}$ in Eq. (2) are predicted by the Designed Regression. Afterwards, the Designed Regression is applied to the molecular polarizabilities:

yielding the following atomic polarizabilities:

	Estimate	SE	TStat	PValue
Н	0.388649	0.0291522	13.3317	7.60488×10^{-34}
Csp3	1.0813	0.0611446	17.6844	3.2632×10^{-52}
Csp2	1.29038	0.0320951	40.2049	4.0955×10^{-143}
Csp	1.29165	0.110219	11.7189	1.70283×10^{-27}
\rightarrow N	1.08463	0.071505	15.1685	1.95626×10^{-41}
0	0.353941	0.0276127	12.8181	8.72538×10^{-32}
В	0.242837	0.137951	1.76032	0.0791128
F	0.345808	0.0317926	10.877	2.46478×10^{-24}
Р	1.09758	0.190508	5.76135	1.65901×10^{-8}
S	2.77091	0.0711402	38.9501	1.06837×10^{-138}
Cl	2.42837	0.132329	18.351	4.13099×10^{-55}
	H Csp3 Csp2 Csp $\rightarrow N$ O B F P S C1	Estimate H 0.388649 Csp3 1.0813 Csp2 1.29038 Csp 1.29165 N 1.08463 O 0.353941 B 0.242837 F 0.345808 P 1.09758 S 2.77091 C1 2.42837	Estimate SE H 0.388649 0.0291522 Csp3 1.0813 0.0611446 Csp2 1.29038 0.0320951 Csp 1.29165 0.110219 N 1.08463 0.071505 O 0.353941 0.0276127 B 0.242837 0.137951 F 0.345808 0.0317926 P 1.09758 0.190508 S 2.77091 0.0711402 C1 2.42837 0.132329	Estimate SE TStat H 0.388649 0.0291522 13.3317 Csp3 1.0813 0.0611446 17.6844 Csp2 1.29038 0.0320951 40.2049 Csp 1.29165 0.110219 11.7189 → N 1.08463 0.071505 15.1685 O 0.353941 0.0276127 12.8181 B 0.242837 0.137951 1.76032 F 0.345808 0.0317926 10.877 P 1.09758 0.190508 5.76135 S 2.77091 0.0711402 38.9501 C1 2.42837 0.132329 18.351

RSquared \rightarrow 0.99967, AdjustedRSquared \rightarrow 0.999661,

```
<code>EstimatedVariance</code> \rightarrow 0.203444, ANOVATable \rightarrow
```

	DF	SumOfSq	MeanSq	FRatio	PValue
Model	11	248641.	22603.7	111105.	$1.148436604804 \times 10^{-693}$
Error	403	81.9878	0.203444		
U Total	414	248723.			

FIG. 3. Result of the Designed Regression on the molecular polarizabilities of the 414 ionic liquids under investigation.

FIG. 4. Comparison between experimental and computational molecular polarizabilities.

MODEL OF THE EXCESS ELECTRON

The molecular polarizabilities α_{mol} in Table I were computed by MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVQZ for neutral and charged ionic liquid related compounds. The agreement between the quantum-chemical results indicates that MP2/aug-cc-pVDZ seems to be sufficient to compute reasonable molecular polarizabilities as visible in Fig. 5. Ref. 6 showed that using HF or smaller basis sets, e.g. 6-311+G(3df,2p), result in lower predictions of α_{mol} .

FIG. 5. Comparison between quantum-chemical calculations of the molecular polarizability at MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVQZ level. The dashed line represents 100% agreement.

Molecule	Abbreviation	MP2	CCSD(T)	Designed
		aug-cc-pVDZ	aug-cc-pVQZ	Regression
		$lpha_{ m mol}/{ m \AA}^3$	$lpha_{ m mol}/{ m \AA}^3$	$lpha_{ m mol}/{ m \AA}^3$
methane		2.5	2.4	2.3
ethane		4.3	4.1	4.1
ethylene		4.1	4.1	3.6
ethyne		3.4	3.4	2.9
propane		6.1	5.8	6.0
butane		7.9	7.5	7.8
isobutylene		7.8	7.5	7.3
isobutane		7.9		7.8
H_2S		3.5	3.6	2.5
HCN		2.5	2.5	2.6
HSCN		6.1	6.2	6.5
CF_4		2.8	2.5	2.8
CCl_4		10.1	10.0	12.1
CF_2Cl_2		6.4	6.2	7.4
NH ₃		2.1	1.9	1.9
$NH(CH_3)_2$		5.7	5.3	5.6
PF_5		4.0	3.4	3.3
PCl ₃		10.2	10.4	9.6
$H_2C=O$		2.6	2.5	2.4
CH ₃ OH		3.1	2.9	2.9
imidazole	[im]	7.1	7.0	7.4
methylimidazole	$[C_1 im]$	9.3		9.3
pyrrol		8.1	7.9	7.8
pyrrolidin	[pyrr]	8.5		8.8
pyridin	[py]	9.6		9.1
CN^{-}		4.4	4.0	2.7
SCN ⁻		7.7	7.5	4.9
$N(CN)_2^-$		8.0	7.3	6.2
PCl_6^-		18.5	18.0	19.4
NO_3^-		4.9	4.2	3.1
Cl-		3.4	4.2	3.0
F^-		1.0	1.0	0.4
HCOO ⁻		3.9	3.5	3.0
acetate	$[C_1 COO^-]$	5.7	5.8	4.9
propionate	$[C_2H_5COO^-]$	7.4	7.4	6.7
$\mathrm{NTf}_2^-(\mathrm{trans})$		15.2		13.0
imidazolium ⁺	$[im^+]$	6.3	6.1	7.3
$methylimidazolium^+$	$[C_1 im^+]$	8.2		
1-ethyl-3-methylimidazolium	$[C_2C_1im^+]$	11.9		12.9
1-butyl-3-methylimidazolium	$[C_4C_1im^+]$	13.9		16.6
pyridinium ⁺	$[py^+]$	8.6		9.2
pyrrolidinium ⁺	$[pyrr^+]$	7.4		8.9
NH_4^+		1.3	1.3	2.1
$CH_3NH_3^+$	$[C_1 NH_3^+]$	2.9	2.0	4.0
$C_2H_5NH_3^+$	$[C_2 NH_3^+]$	4.6	4.6	5.8
$(CH_3)_2 NH_2^+$	$[\mathrm{C}_1\mathrm{C}_1\mathrm{NH}_3^+]$	4.6	4.5	5.8

TABLE I. Predicted and computed molecular polarizabilities of selected compounds.

COMPUTATION OF THE ATOMIC POLARIZABILITIES

For the computation of atomic polarizabilities in case of 1-ethyl-3-methyl-imidazolium, the Designed regression values of $\alpha_H = 0.389 \text{ Å}^3$, $\alpha_{C(sp^2)} = 1.290 \text{ Å}^3$, $\alpha_{C(sp^3)} = 1.081 \text{ Å}^3$ and $\alpha_N = 1.085 \text{ Å}^3$ are used. Following our common setup for polarizable molecular dynamics simulations using Drude oscillators,⁷ the polarizability of the hydrogens should be merged with that of the attached non-hydrogen atom.⁸ Consequently, terminal carbons of the alkyl chains will be assigned $\alpha_C^{\text{term}} = 1.081 \text{ Å}^3 + 3 \cdot 0.389 \text{ Å}^3 = 2.248 \text{ Å}^3$. The CH₂-group has a polarizability of $\alpha_C^{\text{CH2}} = 1.081 \text{ Å}^3 + 2 \cdot 0.389 \text{ Å}^3 = 1.859 \text{ Å}^3$. The ring-nitrogen and carbons have a polarizability of $\alpha_N = 1.085 \text{ Å}^3$ and $\alpha_C^{\text{CH}} = 1.290 \text{ Å}^3 + 0.389 \text{ Å}^3 = 1.679 \text{ Å}^3$, respectively.

These polarizabilities have to be corrected by the polarizability of the excess electron $\alpha_e = 1.87 \text{\AA}^3$, yielding:

$$\alpha_C^{\text{term}} = 2.248 \mathring{A}^3 - \frac{4}{19} \alpha_e = 1.854 \mathring{A}^3 \tag{4}$$

$$\alpha_C^{\text{CH2}} = 1.859 \mathring{A}^3 - \frac{3}{19} \alpha_e = 1.564 \mathring{A}^3 \tag{5}$$

$$\alpha_N = 1.085 \mathring{A}^3 - \frac{1}{19} \alpha_e = 0.987 \mathring{A}^3 \tag{6}$$

$$\alpha_C^{\rm CH} = 1.679 \mathring{A}^3 - \frac{2}{19} \alpha_e = 1.482 \mathring{A}^3 \tag{7}$$

REFERENCES

- ¹Wolfram Research, Inc., *Mathematica*, Champaign, Illinois, version 9.0 ed. (2012).
- ²S. R. Searle, *Linear models for unbalanced data* (John Wiley & Sons, New York, 1987).
- ³J. D. Jobson, Applied multivariate data analysis volume 1: Regression and experimental design (Springer-Verlag, New York, 1991).
- ⁴H. Sahai and M. Ageel, *The analysis of variance: Fixed, random and mixed models* (Birkhauser, Boston, 2000).
- ⁵R. Nisbet, J. Elder, and G. Miner, *Statistical analysis and data mining* (Academic press, Elsevier, 2009).
- ⁶E. I. Izgorodina, M. Forsyth, and D. R. MacFarlane, Phys. Chem. Chem. Phys. **11**, 2452 (2009).
- ⁷C. Schröder and O. Steinhauser, J. Chem. Phys. **133**, 154511 (2010).
- ⁸M. Schmollngruber, V. Lesch, C. Schröder, A. Heuer, and O. Steinhauser, Phys. Chem. Chem. Phys. **17**, 14297 (2015).