Supporting information: TD-DFT Study of the Light-induced Spin Crossover of Fe(III) Complexes

Sergi Saureu,^a Coen de Graaf^{a,b} ^aDepartament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain. E-mail: coen.degraaf@urv.cat ^bInstitució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluis Companys 23, 08010 Barcelona, Spain November 27, 2015

Contents

S1 $[Fe(qsal)_2]^+$: complete active space orbitals, CAS(13,14).	3
S2 $[Fe(qsal)_2]^+$: Selected B3LYP* angles.	5
S3 [Fe(qsal) ₂] ⁺ : Selected PBE0 distances, angles, energies and vibrations.	- 7
S4 $[Fe(pap)_2]^+$: complete active space orbitals, CAS(13,14).	10
S5 $[Fe(pap)_2]^+$: Selected B3LYP* angles.	12
S6 Optimized XYZ coordinates.	14
S6.1 [Fe(qsal) ₂] ⁺ : B3LYP*/def2-TZVP LS geometry	14
S6.2 $[Fe(qsal)_2]^+$: B3LYP*/def2-TZVP IS geometry	16
S6.3 $[Fe(qsal)_2]^+$: B3LYP*/def2-TZVP HS geometry	18
S6.4 $[Fe(qsal)_2]^+$: PBE0/def2-TZVP LS geometry	20
S6.5 $[Fe(qsal)_2]^+$: PBE0/def2-TZVP IS geometry.	22
S6.6 $[Fe(qsal)_2]^+$: PBE0/def2-TZVP HS geometry	24
S6.7 $[Fe(pap)_2]^+$: B3LYP*/def2-TZVP LS geometry	26
S6.8 $[Fe(pap)_2]^+$: B3LYP*/def2-TZVP IS geometry	27
S6.9 $[Fe(pap)_2]^+$: B3LYP*/def2-TZVP HS geometry	29

S1 $[Fe(qsal)_2]^+$: complete active space orbitals, CAS(13,14).

Figure S1.1: CAS(13,14) orbitals. For CAS(9,12) the π orbitals are not included in the active space.

Figure S1.1: (*Continued*) CAS(13,14) orbitals. For CAS(9,12) the π orbitals are not included in the active space.

S2 $[Fe(qsal)_2]^+$: Selected B3LYP* angles.

Table S2.1: B3LYP*/def2-TZVP optimized angles. The experimental distances in parenthesis are taken from [Hayami *et al.*, *J. Am. Chem. Soc.* **2001**, 123, 11644–11650].

angle	LS	HS	Δ K
O(1)-Fe(1)-O(2)	93.4 (93.8)	96.7 (98.2)	3.3(4.4)
O(1)-Fe(1)-N(1)	93.7 (94.7)	86.3(97.1)	7.4(2.4)
O(1)-Fe(1)-N(2)	175.0(175.7)	161.3 (165.2)	$13.7\ (10.5)$
O(1)-Fe(1)-N(3)	87.1 (85.3)	103.6 (89.1)	16.5(3.8)
O(1)-Fe(1)-N(4)	89.2 (90.4)	90.0 (89.8)	0.8 (0.6)
O(2)– $Fe(1)$ – $N(1)$	87.1 (86.6)	$103.6\ (89.1)$	16.5(2.5)
O(2)-Fe(1)-N(2)	89.2 (89.9)	89.9(89.8)	0.7~(0.1)
O(2)– $Fe(1)$ – $N(3)$	93.7 (94.5)	86.3 (97.1)	7.4(2.6)
O(2)– $Fe(1)$ – $N(4)$	$175.0\ (175.1)$	$161.3 \ (165.2)$	13.7 (9.9)
N(1)–Fe (1) –N (2)	82.2 (83.3)	75.2 (95.5)	7.0(12.2)
N(1)–Fe (1) –N (3)	178.9(179.0)	$165.3\ (170.5)$	13.6 (8.5)
N(1)–Fe (1) –N (4)	96.9 (95.6)	94.2(77.4)	2.7(18.2)
N(2)-Fe (1) -N (3)	96.9 (96.6)	94.1(77.4)	2.8(19.2)
N(2)-Fe(1)-N(4)	88.5 (86.0)	$89.1 \ (85.4)$	0.6 (0.6)
N(3)-Fe (1) -N (4)	82.2 (83.3)	75.2 (95.5)	7.0(12.2)

Figure S2.1: Atom numbering of the $[Fe(qsal)_2]^+$ used in Table S2.1.

S3 $[Fe(qsal)_2]^+$: Selected PBE0 distances, angles, energies and vibrations.

Table S3.1: PBE0/def2-TZVP optimized bond lengths in Å of complex $[Fe(qsal)_2]^+$. The B3LYP* distances are taken from this work and experimental distances from [Hayami *et al.*, *J. Am. Chem. Soc.* **2001**, 123, 11644–11650].

distance	HS	LS	Δr
		PBE0	
Fe–O	1.91	1.86	0.05
$\rm Fe-N_1$	2.19	2.00	0.19
$\rm Fe-N_2$	2.13	1.95	0.18
		B3LYP*	
Fe–O	1.91	1.88	0.03
$\rm Fe-N_1$	2.21	2.02	0.19
$\rm Fe-N_2$	2.18	1.97	0.21
		Experimental	
Fe–O	1.88	1.88	0.00
$\rm Fe-N_1$	2.12	1.97	0.15
$\rm Fe-N_2$	2.09	1.94	0.25

angle	LS	HS	Δ \measuredangle
O(1)-Fe(1)- $O(2)$	94.4 (93.4)	97.3 (96.7)	2.9(3.3)
O(1)-Fe(1)-N(1)	93.6(93.7)	86.3(103.5)	7.3(7.4)
O(1)-Fe(1)-N(2)	174.3 (175.0)	161.2(161.3)	$13.1 \ (13.7)$
O(1)-Fe(1)-N(3)	86.6(87.1)	$101.1 \ (86.3)$	14.5(16.5)
O(1)-Fe(1)-N(4)	89.3(89.2)	90.4 (90.0)	1.1 (0.8)
O(2)– $Fe(1)$ – $N(1)$	86.6(87.1)	100.6 (86.3)	14(16.5)
O(2)– $Fe(1)$ – $N(2)$	89.3(89.2)	90.9 (89.9)	1.6 (0.7)
O(2)– $Fe(1)$ – $N(3)$	93.6(93.7)	86.4(103.6)	7.2(7.4)
O(2)– $Fe(1)$ – $N(4)$	174.3 (175.0)	161.4(161.3)	12.9(13.7)
N(1)-Fe(1)-N(2)	82.3 (82.2)	75.5(94.2)	6.8(7)
N(1)-Fe(1)-N(3)	178.9(178.9)	$169.1 \ (165.3)$	$9.8\ (13.6)$
N(1)-Fe(1)-N(4)	$97.5 \ (96.9)$	96.7(75.2)	0.8(2.7)
N(2)–Fe (1) –N (3)	$97.5 \ (96.9)$	96.7(75.2)	0.8(2.8)
N(2)-Fe (1) -N (4)	87.4 (88.5)	87.0 (89.1)	$0.4 \ (0.6)$
N(3)-Fe(1)-N(4)	82.3(82.2)	75.5 (94.1)	6.8(7)

Table S3.2: PBE0/def2-TZVP optimized angles. B3LYP* values in parenthesis are given for comparison.

Table S3.3: Adiabatic HS-LS energy difference (ΔE_{HL}) and difference in zeropoint energy (ΔZPE) at PBE0/def2-TZVP level. Energies in cm⁻¹. B3LYP* values are given for comparison.

	[Fe(q	$[sal)_2]^+$
	PBE0	B3LYP*
ΔE_{HL}	-1380	2166
ΔZPE	-590	-670
ΔH_{HL}	-1970	1496

	$[Fe(qsal)_2]^+$			
	PE	BE0	B3L	YP*
Character	LS	HS	LS	HS
Bending				
	166	138	164	133
	186	147	184	141
	201	186	200	185
	224	195	224	193
	235	212	233	210
Stretching				
e_g	223	218	218	222
e_g	261	225	256	239
a_g	263	230	259	226
t_{1u}	350	265	342	260
t_{1u}	361	275	353	261
t_{1u}	397	317	385	308

Table S3.4: Frequencies in cm^{-1} of the Fe-L bending and stretching modes for the LS and HS states of $[Fe(qsal)_2]^+$ at PBE0 level. The labels of the stretching modes are approximate due to the non-ideal octahedral symmetry. B3LYP* values are given for comparison.

S4 $[Fe(pap)_2]^+$: complete active space orbitals, CAS(13,14).

Figure S4.1: CAS(13,14) orbitals. For CAS(9,12) the π orbitals are not included in the active space.

Figure S4.1: (*Continued*) CAS(13,14) orbitals. For CAS(9,12) the π orbitals are not included in the active space.

S5 $[Fe(pap)_2]^+$: Selected B3LYP* angles.

Table S5.1: B3LYP*/def2-TZVP optimized angles. The experimental distances in parenthesis are taken from [Hayami *et al.*, *Chem. Eur. J.* **2009**, 15, 3497–3508].

angle	LS	HS	Δ \measuredangle
O(1)-Fe(1)-O(2)	94.8 (93.6)	101.1 (96.0)	6.3(2.4)
O(1)-Fe(1)-N(1)	84.9 (85.7)	77.6(79.0)	7.3(6.7)
O(1)–Fe (1) –N (2)	166.1 (166.4)	150.3(152.8)	15.8(13.6)
O(1)-Fe(1)-N(3)	90.8 (92.0)	114.2(110.9)	23.4(18.9)
O(1)-Fe(1)-N(4)	89.8 (90.5)	91.0(94.3)	1.2 (3.8)
O(2)– $Fe(1)$ – $N(1)$	90.3 (91.6)	$102.2\ (115.1)$	11.9(23.5)
O(2)–Fe (1) –N (2)	87.9 (90.0)	89.9 (92.0)	2.0(2.0)
O(2)–Fe (1) –N (3)	85.0(85.7)	77.4(79.2)	7.6(6.5)
O(2)–Fe (1) –N (4)	165.7 (166.4)	150.7 (152.7)	15.0(13.7)
N(1)–Fe (1) –N (2)	81.4 (81.0)	73.1(74.1)	8.3(6.9)
N(1)–Fe (1) –N (3)	$173.4\ (176.4)$	168.2 (162.3)	5.2(14.1)
N(1)–Fe (1) –N (4)	$103.7\ (101.7)$	95.0(91.7)	8.7(10.0)
N(2)–Fe (1) –N (3)	$103.0\ (101.4)$	106.5 (96.1)	3.5(5.3)
N(2)– $Fe(1)$ – $N(4)$	90.9 (89.0)	92.5 (90.4)	1.6(1.4)
N(3)–Fe (1) – $N(4)$	81.3 (81.1)	73.2(73.5)	8.1(7.6)

Figure S5.1: Atom numbering of the $[Fe(pap)_2]^+$ used in Table S5.1.

S6 Optimized XYZ coordinates.

S6.1 $[Fe(qsal)_2]^+$: B3LYP*/def2-TZVP LS geometry.

Fe	$-0.000115 \ 0.000096 \ -0.000017$
Ν	$1.442446 \ 1.404755 \ 0.012291$
Ν	$0.019250 \ 0.343410 \ 1.933642$
Ν	1.442537 - 1.404589 - 0.012431
Ν	0.018962 - 0.343534 - 1.933639
0	-1.288011 -1.360607 0.132881
0	$-1.287985 \ 1.360773 \ -0.132984$
С	$3.065181 \ 3.129867 \ 2.855428$
С	$3.408016 \ 3.349481 \ 0.389383$
С	-3.178060 -2.468423 0.932800
С	-0.930580 -0.049708 2.739398
С	$1.758848 \ 1.814433 \ 1.275561$
С	-4.081093 -2.730943 1.937797
С	$1.376597 \ 1.570841 \ 3.642298$
С	-2.109856 - 1.559928 1.125666
С	$2.388935 \ 2.520936 \ 3.886298$
С	3.051232 2.940791 - 0.870455
С	-2.939304 -1.235105 3.420715
С	$2.765488 \ 2.785817 \ 1.516932$
С	-1.987464 -0.933837 2.410774
С	$2.061169 \ 1.953206 \ -1.018558$
С	$1.033185 \ 1.228955 \ 2.346386$
С	-3.969099 -2.113253 3.198726
С	3.065132 -3.129558 -2.855742
С	3.408120 -3.349270 -0.389727
С	$-3.179040 \ 2.467265 \ -0.932387$
С	$-0.931481 \ 0.048716 \ -2.739064$
С	1.758862 -1.814249 -1.275730
С	-4.082942 2.728621 -1.936918
С	1.376359 - 1.570659 - 3.642436

-2.110556 1.559148 -1.125393
2.388767 -2.520653 -3.886546
3.051380 -2.940665 0.870147
-2.941384 1.232461 -3.419686
2.765519 -2.785574 -1.517209
-1.988682 0.932386 -2.410216
2.061335 -1.953078 1.018356
1.033036 -1.228849 -2.346487
-3.971534 2.110147 -3.197506
$3.835674 \ 3.866050 \ 3.055835$
$4.176752 \ 4.101858 \ 0.532846$
-3.267470 -2.938417 -0.039453
$-0.930521 \ 0.328241 \ 3.761985$
-4.894318 -3.424872 1.751453
$0.876469 \ 1.112674 \ 4.487287$
$2.633950 \ 2.774808 \ 4.911626$
3.518270 3.358166 -1.753641
-2.835270 -0.753120 4.388166
1.769781 1.605393 -2.002230
-4.686301 -2.332626 3.980457
3.835665 -3.865679 -3.056230
4.176865 -4.101625 -0.533261
-3.268010 2.937829 0.039629
-0.931776 -0.329715 -3.761476
-4.896424 3.422211 -1.750435
0.876098 - 1.112500 - 4.487352
2.633737 -2.774470 -4.911899
3.518462 -3.358083 1.753289
-2.837753 0.749930 -4.386908
1.770032 -1.605296 2.002061
-4.689447 2.328580 -3.978851

Total Energy: -2864.16942645 Hartree

S6.2 $[Fe(qsal)_2]^+$: B3LYP*/def2-TZVP IS geometry.

Fe	$0.457434\ 0.000107\ \text{-}0.000124$
Ν	$1.956339 \ 1.446225 \ 0.164722$
Ν	$0.584375 \ 0.300954 \ 2.124339$
Ν	1.956787 - 1.445384 - 0.165046
Ν	0.584224 - 0.300623 - 2.124492
0	-0.785540 -1.346013 0.345874
0	$\textbf{-0.786101} \ \textbf{1.345735} \ \textbf{-0.345712}$
С	$3.739660 \ 2.946458 \ 3.044401$
С	$3.986852 \ 3.312268 \ 0.589805$
С	-2.918139 -2.052116 1.002711
С	$-0.441913 \ 0.074041 \ 2.890705$
С	$2.332562 \ 1.757140 \ 1.440379$
С	-3.919003 -2.129011 1.949328
С	$2.047706 \ 1.390555 \ 3.813324$
С	-1.727158 -1.344434 1.262661
С	$3.093424 \ 2.299404 \ 4.070183$
С	$3.567871 \ 3.003079 \ -0.679139$
С	-2.634143 -0.803070 3.476505
С	$3.373205 \ 2.689902 \ 1.701683$
С	-1.584033 -0.700226 2.533107
С	$2.544953 \ 2.053158 \ -0.849675$
С	$1.639713 \ 1.132580 \ 2.517301$
С	-3.784375 -1.503877 3.199914
С	3.740059 -2.945333 -3.044915
С	3.987593 - 3.311075 - 0.590342
С	-2.919239 2.050630 -1.002084
С	-0.442299 -0.074149 -2.890673
С	2.332932 -1.756255 -1.440744
С	-3.920379 2.126962 -1.948457
С	2.047664 - 1.389821 - 3.813661
С	-1.727916 1.343641 -1.262319
С	3.093558 - 2.298441 - 4.070632

С	3.568702 - 3.001935 0.678645
\mathbf{C}	-2.635101 0.801828 -3.475972
С	3.373719 -2.688820 -1.702157
С	-1.584718 0.699553 -2.532820
С	2.545636 - 2.052195 0.849294
С	1.639792 -1.131904 -2.517590
С	-3.785684 1.501950 -3.199095
Н	$4.540094 \ 3.648717 \ 3.249367$
Н	$4.782339 \ 4.031997 \ 0.753655$
Η	-3.020678 -2.530923 0.036093
Н	$-0.477922 \ 0.538428 \ 3.879857$
Η	-4.825849 -2.677274 1.716545
Η	$1.566298 \ 0.888094 \ 4.644967$
Η	$3.389624 \ 2.487099 \ 5.096309$
Η	4.009710 3.469092 -1.550843
Н	-2.516294 -0.309067 4.436233
Н	2.199062 1.783578 -1.841156
Η	$-4.578810 \ -1.571028 \ 3.933478$
Η	4.540607 -3.647439 -3.249962
Η	4.783181 -4.030675 -0.754269
Η	-3.021832 2.529342 -0.035426
Η	-0.478275 -0.538537 -3.879825
Н	-4.827494 2.674669 -1.715427
Н	1.566006 - 0.887521 - 4.645256
Н	3.389664 -2.486104 -5.096791
Η	4.010715 - 3.467868 1.550304
Η	-2.517188 0.307912 -4.435738
Η	2.199800 - 1.782675 1.840809
Η	-4.580336 1.568637 -3.932465

Total Energy: -2864.14382875 Hartree

S6.3 $[Fe(qsal)_2]^+$: B3LYP*/def2-TZVP HS geometry.

Fe	$0.092436 \ 0.002965 \ 0.000133$
Ν	$1.664713 \ 1.546310 \ 0.110486$
Ν	$0.371738 \ 0.362824 \ 2.133577$
Ν	1.664089 - 1.542287 - 0.108397
Ν	0.372410 - 0.359310 - 2.132640
0	-1.179972 -1.328868 0.517732
0	-1.177819 1.336393 -0.519246
С	$3.300917 \ 3.345513 \ 2.900011$
С	$3.573750 \ 3.550745 \ 0.438056$
С	-2.655859 -2.809265 1.584490
С	-0.322253 -0.240886 3.064088
С	$1.997376 \ 1.953653 \ 1.365969$
С	-3.212727 -3.300919 2.746293
С	$1.694643 \ 1.741349 \ 3.746873$
С	-1.687292 -1.782180 1.623819
С	$2.670516 \ 2.734119 \ 3.955649$
С	3.205465 3.132418 -0.814609
С	-1.897436 -1.795326 4.070491
С	$2.975337 \ 2.967350 \ 1.578502$
С	-1.295929 -1.263508 2.901535
С	2.240612 2.117625 - 0.931935
С	$1.335240 \ 1.339287 \ 2.470956$
С	-2.836776 -2.795881 4.004376
С	3.302396 -3.341897 -2.896524
С	3.573330 -3.546967 -0.434396
С	-2.657474 2.811622 -1.588131
С	$-0.324118 \ 0.240709 \ -3.063638$
С	1.997597 - 1.949953 - 1.363569
С	-3.217146 3.298642 -2.750530
С	1.697012 -1.737564 -3.744701
С	$-1.687934 \ 1.785366 \ -1.625829$
С	2.672963 - 2.730399 - 3.952691

С	3.204238 - 3.128391 0.817934
\mathbf{C}	-1.902956 1.789912 -4.072196
С	2.975714 -2.963668 -1.575303
С	-1.298574 1.262740 -2.902588
С	2.239444 -2.113431 0.934426
С	1.336272 -1.335733 -2.469095
С	-2.843182 2.789712 -4.007659
Н	$4.046335 \ 4.115588 \ 3.065359$
Н	$4.318389 \ 4.329301 \ 0.569304$
Н	-2.948136 -3.191986 0.613541
Н	$-0.154746 \ 0.041868 \ 4.104824$
Н	-3.956288 -4.089227 2.687233
Н	$1.229921 \ 1.301130 \ 4.619974$
Н	$2.920077 \ 3.018880 \ 4.971666$
Н	$3.639587 \ 3.563972 \ -1.707775$
Н	-1.598364 -1.393394 5.033927
Н	1.931670 1.764022 -1.909069
Н	-3.284912 -3.191908 4.907267
Н	4.047986 -4.111944 -3.061227
Н	4.318009 -4.325590 -0.565034
Н	-2.948334 3.197305 -0.617934
Н	-0.158408 -0.045521 -4.103708
Н	-3.961442 4.086349 -2.692707
Н	1.233473 -1.296850 -4.618192
Н	2.923545 -3.014960 -4.968512
Н	$3.637748 - 3.559794 \ 1.711469$
Н	-1.605355 1.385013 -5.034846
Н	1.930139 -1.759525 1.911319
Н	-3.293427 3.182273 -4.911020

Total Energy: -2864.15817369 Hartree

S6.4 $[Fe(qsal)_2]^+$: PBE0/def2-TZVP LS geometry.

Fe	$0.057088 \ \text{-}0.000195 \ 0.000034$
Ν	$1.505298 \ 1.375215 \ 0.025904$
Ν	$0.051476 \ 0.336703 \ 1.917808$
Ν	1.505643 - 1.375306 - 0.026089
Ν	0.051166 - 0.337193 - 1.917726
0	-1.211731 -1.358728 0.126997
0	-1.211966 1.358114 -0.126815
С	$3.169719 \ 3.013837 \ 2.895798$
С	$3.512365 \ 3.268503 \ 0.426378$
С	-3.204097 -2.350666 0.820430
С	$-0.979904 \ 0.053497 \ 2.667980$
С	$1.833146 \ 1.756451 \ 1.289413$
С	-4.213049 -2.489787 1.749427
С	$1.441273 \ 1.475587 \ 3.654745$
С	-2.115409 -1.469230 1.046200
С	$2.478664 \ 2.398555 \ 3.916740$
С	3.140013 2.886734 -0.841870
С	-3.135882 -0.938409 3.231157
С	$2.861073 \ 2.700567 \ 1.549164$
С	-2.074757 -0.768676 2.298892
С	$2.125427 \ 1.920401 \ -1.001339$
С	$1.088580\ 1.170978\ 2.350014$
С	-4.194132 -1.774622 2.967415
С	3.169894 -3.013501 -2.896328
С	3.513023 -3.268178 -0.426971
С	-3.204959 2.349181 -0.819696
С	-0.980593 -0.054550 -2.667584
С	1.833340 - 1.756453 - 1.289664
С	$-4.214401 \ 2.487609 \ -1.748272$
С	1.440998 - 1.475590 - 3.654928
С	$-2.116054 \ 1.468079 \ -1.045693$
С	2.478552 - 2.398317 - 3.917133

С	3.140835 - 2.886500 0.841353
С	-3.137259 0.936271 -3.230063
С	2.861419 -2.700344 -1.549627
\mathbf{C}	-2.075653 0.767233 -2.298228
С	2.126093 -1.920365 1.001028
\mathbf{C}	1.088444 -1.171141 -2.350125
С	-4.195758 1.772090 -2.966054
Н	$3.963413 \ 3.731946 \ 3.111761$
Н	$4.304335 \ 4.005994 \ 0.581613$
Η	-3.224144 -2.891126 -0.127125
Η	$-1.018287 \ 0.487470 \ 3.676841$
Η	-5.046648 -3.162313 1.529792
Η	$0.923623 \ 1.003518 \ 4.492115$
Η	$2.735726 \ 2.628983 \ 4.953285$
Η	3.619431 3.313618 -1.723692
Н	-3.094536 -0.388033 4.175062
Η	1.813668 1.586510 -1.994013
Η	-5.004498 -1.891802 3.688850
Η	3.963706 -3.731432 -3.112450
Η	4.305109 -4.005511 -0.582361
Η	-3.224791 2.889899 0.127716
Η	-1.019159 -0.488738 -3.676347
Η	-5.048185 3.159841 -1.528439
Η	0.923089 -1.003586 -4.492177
Η	2.735502 -2.628641 -4.953729
Η	3.620502 -3.313300 1.723080
Η	-3.096096 0.385665 -4.173841
Η	$1.814475 - 1.586540 \ 1.993767$
Η	-5.006528 1.888684 -3.687130

Total Energy: -2864.279546306 Hartree

S6.5 $[Fe(qsal)_2]^+$: PBE0/def2-TZVP IS geometry.

Fe	$0.556823\ 0.000151\ \text{-}0.000145$
Ν	$2.042366 \ 1.429459 \ 0.200181$
Ν	$0.626955 \ 0.292233 \ 2.115471$
Ν	2.042730 -1.428697 -0.200561
Ν	0.626819 - 0.291930 - 2.115699
0	-0.693341 -1.325993 0.306059
0	-0.693657 1.326005 -0.306110
С	$3.797882 \ 2.880668 \ 3.120708$
С	$4.068659 \ 3.284375 \ 0.667741$
С	-2.935227 -1.821984 0.750528
С	$-0.470333 \ 0.167585 \ 2.801239$
С	$2.406075\ 1.719702\ 1.479021$
С	-4.040468 -1.744604 1.577731
С	$2.082306 \ 1.320044 \ 3.846641$
С	-1.713617 -1.213902 1.111603
С	$3.135423 \ 2.218223 \ 4.129754$
С	$3.657891 \ 2.993093 \ -0.612627$
С	-2.795922 -0.468260 3.186325
С	$3.445585 \ 2.645317 \ 1.767796$
С	-1.644170 -0.522633 2.364064
С	2.632856 2.044133 -0.804135
С	$1.690007 \ 1.086557 \ 2.539448$
С	-3.981739 -1.060879 2.805695
С	3.798335 -2.879475 -3.121264
С	4.069409 -3.283162 -0.668321
С	$-2.935965 \ 1.820686 \ -0.749925$
С	-0.470677 -0.167796 -2.801214
С	2.406398 -1.718866 -1.479437
С	$-4.041442 \ 1.742578 \ -1.576757$
С	2.082329 -1.319249 -3.847031
С	-1.714138 1.213265 -1.111339
С	3.135649 - 2.217160 - 4.130245

26 15 45 8 01 32
15 45 8 01 32
45 8 01 32 .06
8 01 32 .06
)1 32 .06
32 .06
.06
.06
06
3
59
4
5
3
76
33
50
6
19
17
94
)7
9
9
9 74 3

Total Energy: -2864.258874143 Hartree

S6.6 $[Fe(qsal)_2]^+$: PBE0/def2-TZVP HS geometry.

Fe	$0.119757 \ 0.002303 \ 0.000211$
Ν	$1.677948\ 1.527114\ 0.098484$
Ν	$0.403645 \ 0.341232 \ 2.114429$
Ν	1.678481 -1.523092 -0.096675
Ν	0.404331 -0.338410 -2.113466
0	-1.146026 -1.325371 0.495521
0	-1.145365 1.330551 -0.496387
С	$3.340155 \ 3.315871 \ 2.878130$
\mathbf{C}	$3.592320 \ 3.526252 \ 0.409133$
\mathbf{C}	-2.692315 -2.755083 1.531436
С	-0.315639 -0.244443 3.037812
С	$2.024714 \ 1.927568 \ 1.347484$
С	-3.276082 -3.231975 2.688261
С	$1.733903 \ 1.705705 \ 3.731245$
С	-1.687012 -1.759495 1.582639
С	$2.713131 \ 2.700457 \ 3.937072$
С	$3.204958 \ 3.112598 \ -0.843657$
С	-1.930210 -1.769658 4.035861
С	$3.004404 \ 2.939980 \ 1.556121$
С	-1.303060 -1.253469 2.870040
С	$2.233076 \ 2.098949 \ -0.951429$
С	$1.366646\ 1.307766\ 2.453829$
С	-2.897170 -2.745662 3.956864
С	3.341816 -3.312589 -2.875274
С	3.593257 -3.522191 -0.406190
С	-2.694500 2.755874 -1.534143
С	-0.316296 0.244859 -3.037339
С	2.025624 -1.924029 -1.345433
С	-3.279748 3.229633 -2.691511
С	1.735734 -1.702809 -3.729371
С	-1.687928 1.761492 -1.584012
С	2.715165 -2.697480 -3.934607

С	3.205567 - 3.108090 0.846338
С	-1.933241 1.766171 -4.037130
С	3.005544 -2.936360 -1.553494
С	-1.304568 1.253175 -2.870711
\mathbf{C}	2.233586 -2.094458 0.953509
С	1.367791 -1.304745 -2.452181
С	-2.901223 2.741238 -3.959428
Н	$4.091447 \ 4.091171 \ 3.042713$
Н	$4.345508 \ 4.308445 \ 0.536724$
Н	-2.990652 -3.128880 0.550267
Н	$-0.158683 \ 0.052134 \ 4.085134$
Η	-4.050724 -4.000486 2.615731
Η	$1.269501 \ 1.257339 \ 4.610676$
Н	$2.972082 \ 2.987744 \ 4.958765$
Н	3.633390 3.552175 -1.745456
Н	-1.626381 -1.371724 5.008560
Н	$1.898743 \ 1.745557 \ -1.930270$
Η	-3.371806 -3.137526 4.857727
Η	4.093307 -4.087808 -3.039362
Н	4.346575 -4.304333 -0.533348
Н	-2.992632 3.131274 -0.553531
Н	-0.160053 -0.053757 -4.084178
Н	-4.055368 3.997249 -2.619976
Н	1.271858 -1.254463 -4.609091
Н	2.974642 -2.984886 -4.956136
Η	3.633857 - 3.547261 1.748404
Н	$-1.629774 \ 1.366458 \ -5.009215$
Η	1.899223 -1.740687 1.932188
Η	-3.377004 3.130710 -4.860728

Total Energy: -2864.285826012 Hartree

S6.7 $[Fe(pap)_2]^+$: B3LYP*/def2-TZVP LS geometry.

Fe	$0.003350 \ \text{-} 0.001210 \ \text{-} 0.001041$
Ν	-0.866777 -1.144288 -1.293742
Ν	$1.199841 \ 0.361395 \ -1.579160$
Ν	$0.670956 \ 1.218837 \ 1.341215$
Ν	1.398865 - 1.193628 0.824849
0	-1.273633 -0.672899 1.204623
0	-1.055340 1.450439 -0.556806
С	-2.152435 -1.456923 0.610035
С	-3.263552 -1.991274 1.287852
С	-4.145814 -2.806942 0.605656
С	-3.965673 -3.118434 -0.756298
С	-2.887064 -2.603673 -1.444785
С	-1.979881 -1.773799 -0.767313
С	-0.430635 -1.082389 -2.512421
С	0.730104 -0.244111 -2.709807
С	1.336083 -0.026932 -3.947611
С	$2.434560\ 0.816712\ -4.024873$
С	2.914201 1.416023 -2.864093
С	$2.265024 \ 1.161646 \ -1.662275$
С	$-0.934641 \ 2.486076 \ 0.249695$
С	$-1.696720 \ 3.656762 \ 0.084303$
С	$-1.520292 \ 4.708558 \ 0.961599$
С	$-0.592681 \ 4.643191 \ 2.020865$
С	$0.170241 \ 3.508765 \ 2.202136$
С	$0.005772 \ 2.430152 \ 1.318400$
С	$1.564449\ 0.756412\ 2.158980$
С	$2.003749 - 0.594466 \ 1.892873$
С	$2.964680 - 1.268120 \ 2.648567$
С	3.307996 -2.566919 2.304830
С	2.685640 - 3.167500 1.213815
С	$1.737790 - 2.443932 \ 0.501082$
Н	-3.411347 -1.742210 2.332171

- H -5.002075 -3.216168 1.130856 H -4.678413 -3.758520 -1.262094
- Н -2.745381 -2.839007 -2.494312
- Н -0.907670 -1.591526 -3.345879
- Н 0.937020 -0.512600 -4.830560
- Н 2.911154 1.009303 -4.979302
- Н 3.769656 2.079426 -2.883633
- Н 2.597842 1.620937 -0.738616
- Н -2.412626 3.707401 -0.727799
- Н -2.109417 5.610027 0.830590
- Н -0.478627 5.487081 2.690795
- Н 0.885694 3.453085 3.015844
- Н 1.957348 1.320494 3.000747
- Н 3.429501 -0.770112 3.491267
- Н 4.049855 -3.107442 2.881607
- Н 2.927206 -4.178940 0.912294
- Н 1.226216 -2.878183 -0.350125

Total Energy: -2557.15080505 Hartree

S6.8 [Fe(pap)₂]⁺: B3LYP*/def2-TZVP IS geometry.

- Fe -0.026974 0.048658 0.174363
- O -1.427975 -0.815620 1.238632
- O -1.005485 1.544103 -0.421500
- N -0.884163 -1.138161 -1.277599
- N $1.288872 \ 0.349742 \ -1.710979$
- ${\rm N} \qquad 0.711927 \ 1.296802 \ 1.488093$
- N $1.412698 1.162646 \ 0.989425$
- ${\rm C} \qquad -2.240852 \ \text{-}1.597750 \ 0.575716$
- C -3.357992 -2.218335 1.171262
- C -4.177777 -3.028620 0.411301
- C -3.926547 -3.252271 -0.955419
- C -2.843834 -2.653731 -1.565987

С	-1.994771 -1.826791 -0.811150
С	-0.446373 -1.078693 -2.490843
С	0.708603 -0.246924 -2.776419
С	1.177658 -0.041995 -4.076676
С	$2.256104 \ 0.809076 \ -4.275317$
С	2.849688 1.417178 -3.173900
С	2.329683 1.155031 -1.909660
С	$-0.856926 \ 2.588740 \ 0.369972$
С	$-1.589099 \ 3.775777 \ 0.184939$
С	-1.382992 4.835888 1.044099
С	$-0.456771 \ 4.763424 \ 2.106232$
С	$0.275475 \ 3.613738 \ 2.308899$
С	$0.080427 \ 2.526292 \ 1.441424$
С	$1.596258 \ 0.808157 \ 2.303469$
С	2.015997 -0.555373 2.053765
С	2.956648 -1.229128 2.831348
С	3.283777 -2.540319 2.509860
С	2.665428 -3.147661 1.422571
С	1.733714 -2.420321 0.688040
Η	-3.557205 -2.032696 2.220371
Η	-5.036398 -3.501437 0.875876
Η	-4.588500 -3.890015 -1.529005
Η	-2.657823 -2.825878 -2.620733
Η	-0.929323 -1.610057 -3.308838
Η	0.689736 - 0.534341 - 4.910560
Η	$2.630253 \ 0.998667 \ -5.275161$
Η	3.694803 2.085257 -3.285330
Η	2.763133 1.616247 -1.027329
Η	-2.303947 3.830465 -0.627648
Η	$-1.947517 \ 5.750679 \ 0.898589$
Н	-0.322196 5.615248 2.762062
Н	$0.987815 \ 3.551865 \ 3.124651$
Н	$2.002358 \ 1.369001 \ 3.141993$

- Н 3.419899 -0.727488 3.672730
- Н 4.010781 -3.082531 3.103763
- Н 2.896202 -4.166588 1.138135
- Н 1.222904 -2.858517 -0.161507

Total Energy: -2557.12777064 Hartree

S6.9 $[Fe(pap)_2]^+$: B3LYP*/def2-TZVP HS geometry.

Fe	-0.311573 -0.031902 0.202910
Ν	-1.065794 -1.274036 -1.421614
Ν	$0.964604 \ 0.408623 \ -1.606479$
Ν	$0.744701 \ 1.353158 \ 1.525069$
Ν	$1.319675 - 1.200084 \ 1.189622$
Ο	-1.652808 -1.094533 1.083416
Ο	-1.270764 1.629228 -0.072447
\mathbf{C}	-2.392493 -1.922477 0.379541
\mathbf{C}	-3.454245 -2.656294 0.939311
\mathbf{C}	-4.193200 -3.506422 0.137940
С	-3.909745 -3.657766 -1.232060
С	-2.877529 -2.944777 -1.807270
С	-2.114792 -2.074927 -1.011771
С	-0.590763 -1.095104 -2.604478
С	0.519299 - 0.165998 - 2.749480
С	$1.085714 \ 0.135492 \ -3.987778$
С	2.132001 1.047228 -4.047573
\mathbf{C}	2.589719 1.626599 -2.870638
\mathbf{C}	$1.972576 \ 1.277871 \ -1.672775$
С	$-0.848696 \ 2.721038 \ 0.513755$
С	$-1.439960 \ 3.978925 \ 0.285689$
С	$-0.938915 \ 5.094402 \ 0.926231$
С	$0.146622 \ 5.006431 \ 1.820379$
\mathbf{C}	$0.737990 \ 3.785462 \ 2.071282$
С	$0.253058 \ 2.638319 \ 1.421679$

С	$1.703682 \ 0.894994 \ 2.253423$
С	2.042770 -0.512223 2.106324
С	3.044383 -1.127791 2.858035
С	3.303984 -2.477037 2.659212
\mathbf{C}	2.551511 -3.178763 1.723662
С	$1.566538 - 2.498129 \ 1.013797$
Η	-3.680351 -2.529762 1.991546
Η	-5.011744 -4.068839 0.573936
Η	-4.506264 -4.331508 -1.835332
Η	-2.660523 -3.060614 -2.864204
Н	$\hbox{-}0.985319 \hbox{-}1.592769 \hbox{-}3.490202$
Η	0.700879 - 0.336893 - 4.884453
Η	$2.582048 \ 1.305453 \ -4.999399$
Η	3.403655 2.341123 -2.871157
Η	$2.295694 \ 1.718853 \ -0.736217$
Η	-2.279782 4.044525 -0.395969
Η	$-1.392765 \ 6.061436 \ 0.737808$
Η	$0.515690 \ 5.899113 \ 2.310713$
Η	$1.572853 \ 3.718008 \ 2.760884$
Η	$2.264627 \ 1.505658 \ 2.961371$
Η	$3.605248 - 0.550856 \ 3.584684$
Η	$4.078261 \ -2.975940 \ 3.230937$
Η	2.723099 -4.231538 1.535464
Η	$0.953618 - 3.013623 \ 0.281478$

Total Energy: -2557.14092420 Hartree