Electronic Supplementary Information for

Electrochemical Studies of Hydrogen Chloride Gas in Several Room Temperature Ionic Liquids: Mechanism and Sensing

Krishnan Murugappan, Debbie S. Silvester*

Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box

U1987, Perth, 6845, Australia.

Submitted to Phys. Chem. Chem. Phys.

^{*} To whom correspondence should be addressed.

Email: D.Silvester-Dean@curtin.edu.au

Figure legends

Figure S1: NMR spectra for a) ¹⁹F, b) ¹H and c) ³¹P in [C₄mim][PF₆] before and after experiments with HCl. ¹H Spectra shows the formation of hydrogen bonds after experiments due to features at 11 ppm. ¹⁹F and ³¹P spectra shows that the ratio of P and F before and after experiments have changed, possibility due to the formation of HF and PF_{6-n} where n is less than 6.

Figure S2: CVs for the oxidation (first scan) of 2.56 % hydrogen chloride gas on a 8.3 μ m radius Pt electrode in a) [C₂mim][NTf₂], b) [C₄mim][NTf₂], c) [C₆mim][FAP], d) [C₄mpyrr][NTf₂], e) [C₄mim][BF₄], f) [C₄mim][PF₆] at various scan rates between 0.05-2 V/s. The labels for peaks (I) to (V) are not included for [C₄mim][PF₆] (f) due to different reactions occurring in this RTIL.

Figure S3: Plots of currents vs square root of scan rate in $[C_2mim][NTf_2]$ on a Pt microelectrode (diameter 8.3 µm) for a) $[HCl_2]^-$ oxidation during first scan, b) $[HCl_2]^-$ oxidation during second scan, c) H⁺ reduction and d) Cl⁻ oxidation.

Figure S4: Plots of current vs square root of scan rate in $[C_4mim][NTf_2]$ on a Pt microelectrode (diameter 8.3 µm) for a) $[HCl_2]^-$ oxidation during first scan, b) $[HCl_2]^-$ oxidation during second scan, c) H⁺ reduction and d) Cl⁻ oxidation.

Figure S5: Plots of current vs square root of scan rate in $[C_4mpyrr][NTf_2]$ on a Pt microelectrode (diameter 8.3 µm) for a) $[HCl_2]^-$ oxidation during first scan, b) $[HCl_2]^-$ oxidation during second scan, c) H⁺ reduction and d) Cl⁻ oxidation.

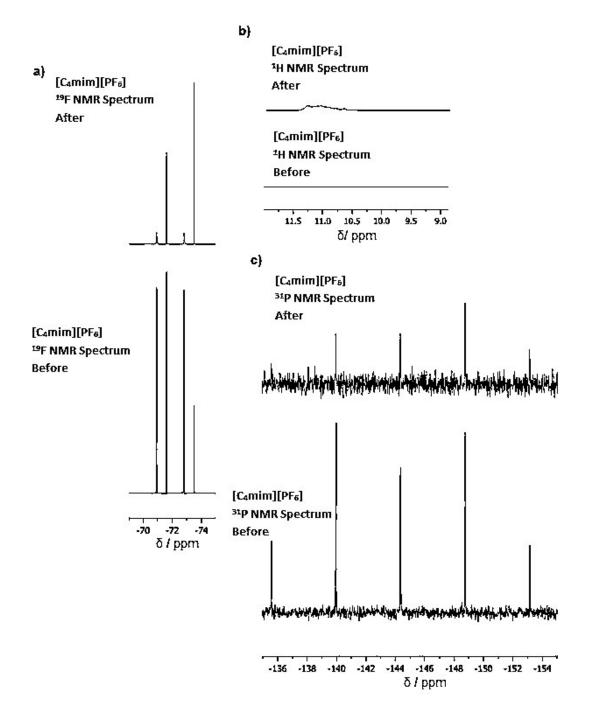


Figure S1: NMR spectra for a) ¹⁹F, b) ¹H and c) ³¹P in [C₄mim][PF₆] before and after experiments with HCl. ¹H Spectra shows the formation of hydrogen bonds after experiments due to features at 11 ppm. ¹⁹F and ³¹P spectra shows that the ratio of P and F before and after experiments have changed ,possibility due to the formation of HF and PF_{6-n} where n is less than 6

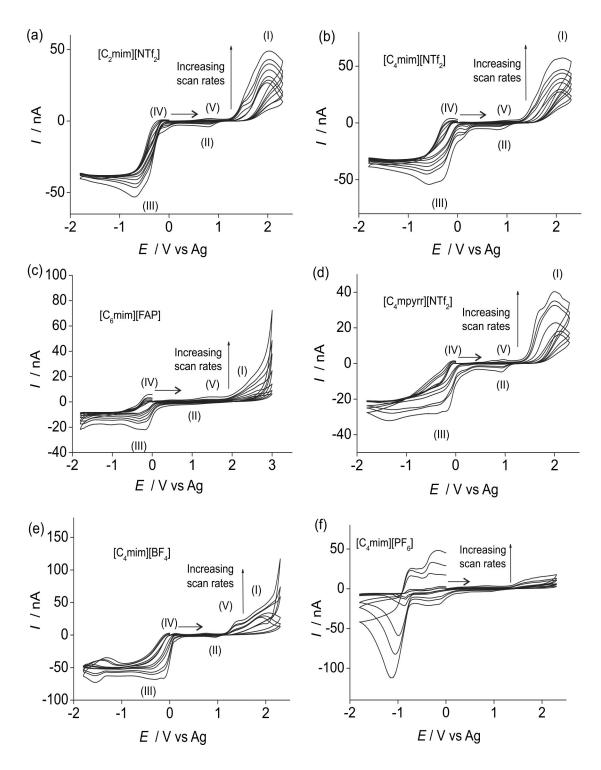


Figure S2: CVs for the oxidation (first scan) of 2.56 % hydrogen chloride gas on a 8.3 μ m radius Pt electrode in a) [C₂mim][NTf₂], b) [C₄mim][NTf₂], c) [C₆mim][FAP], d) [C₄mpyrr][NTf₂], e) [C₄mim][BF₄], f) [C₄mim][PF₆] at various scan rates between 0.05-2 V/s. The labels for peaks (I) to (V) are not included for [C₄mim][PF₆] (f) due to different reactions occurring in this RTIL.

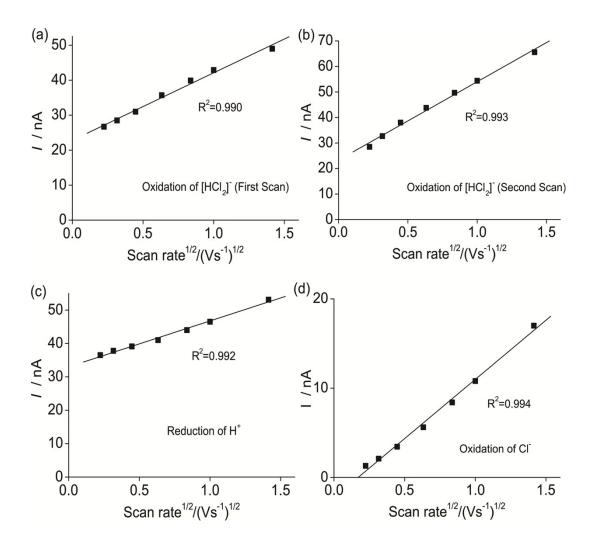


Figure S3: Plots of current vs square root of scan rate in $[C_2mim][NTf_2]$ on a Pt microelectrode (diameter 8.3 µm) for a) $[HCl_2]^-$ oxidation during first scan, b) $[HCl_2]^-$ oxidation during second scan, c) H⁺ reduction and d) Cl⁻ oxidation.

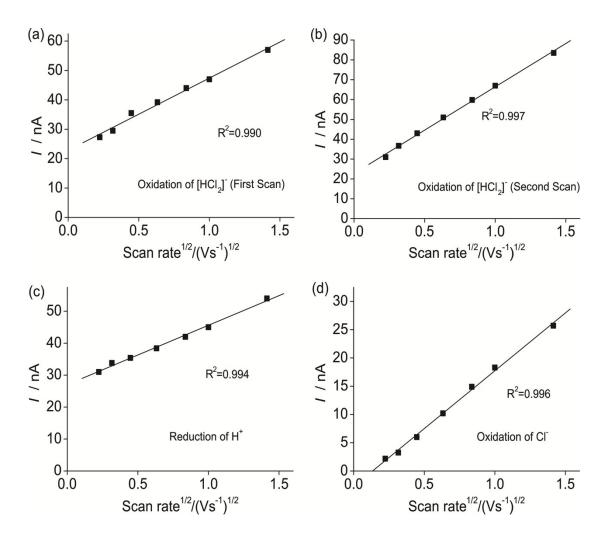


Figure S4: Plots of current vs square root of scan rate in $[C_4mim][NTf_2]$ on a Pt microelectrode (diameter 8.3 µm) for a) $[HCl_2]^-$ oxidation during first scan, b) $[HCl_2]^-$ oxidation during second scan, c) H⁺ reduction and d) Cl⁻ oxidation.

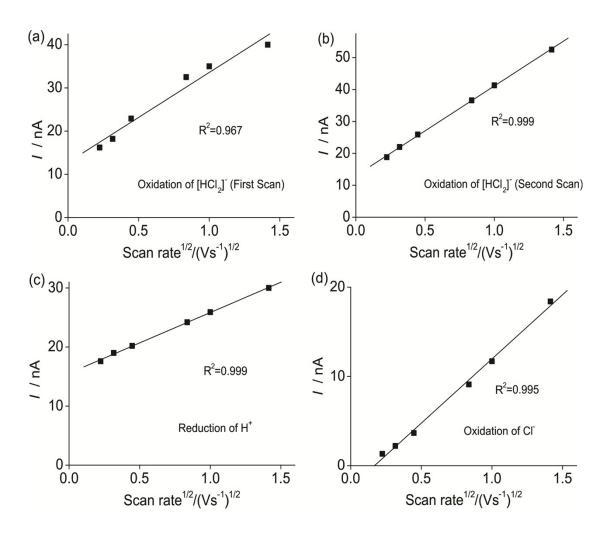


Figure S5: Plots of current vs square root of scan rate in $[C_4mpyrr][NTf_2]$ on a Pt microelectrode (diameter 8.3 µm) for a) $[HCl_2]^-$ oxidation during first scan, b) $[HCl_2]^-$ oxidation during second scan, c) H⁺ reduction and d) Cl⁻ oxidation.