Electronic Supplementary Information

Controlling Phase Transition from Single-Layer MTe₂ (M=Mo, W): Modulation of Potential Barrier under Strain

H. H. Huang^a, Xiaofeng Fan^{a, *}, David J. Singh^{a, c}, Hong Chen^b, Q. Jiang^a and W.T. Zheng^{a, †}

a. College of Materials Science and Engineering, Jilin University, Changchun 130012, China

b. Department of Control Science & Engineering, Jilin University, Changchun 130012, China

c. Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211-7010, USA

*E-mail: <u>xffan@jlu.edu.cn</u>; † E-mail: <u>wtzheng@jlu.edu.cn</u>

Table S1

	$\Delta E_1(eV)$	$\Delta E_2(eV)$	Barrier-1(eV/f.u)	Barrier-2(eV/f.u)
MoTe ₂	0.091	0.047	0.893	0.842
WTe ₂	0.049	0.035	0.767	0.740

Table 1 ΔE_1 is the energy difference of 2H phase calculated with 2H lattice parameters and with 1T' lattice parameters. ΔE_2 is the energy difference of 1T' phase calculated with 1T' lattice parameters and with 2H lattice parameters. Barrier-1 is the energy barrier from 2H to 1T' which is calculted with 2H lattice parameters. Barrier-2 is the energy barrier from 2H to 1T' which are calculted with 1T' lattice parameters.

Fig. S1 Changes of lattice parameter in *c*-axis indicated in Figure 1 following the minimum-emergy path way with reaction coordinate defined by the coorinate of the related Te atoms along *b* axis obtained in Figure 2 for the phase transition from 2H to 1T' about MoTe₂ (a) and WTe₂ (b).

Fig. S2

Fig. S2 Energy changes of 2H- and 1T'-phase $MoTe_2$ following the *a*-axis compression under different *b*-axis tensile strain from 5% to 8%. Note that solid line represents 2H structure and the dash line is for 1T'structure.

Table S2

	Tensile strain (b axis)	Compression of a-axis	Compression of a-axis
		Energy minimum (2H-phase)	Energy minimum (1T'-phase)
	5%	1%	2.5%
MoTe ₂	6%	1%	3%
	7%	1%	3.5%
	8%	1%	4%

Table S2 Under different tensile strain of *b*-axis, the *a*-axis compression at the equilibrium state for 2H-phase and 1T' phase of $MoTe_2$

Fig. S3

Fig. S3 Potential energy curves of initial state (metal atom fixed at 0.5 in *b* axis shown by solid circle lines) and final state (metal atom fixed at 0.36 in *b* axis shown by open circle lines) under *b*-axis tensile strain of 6% with different *a*-axis compression including 0%, 1% and 3% for MoTe₂.

Fig. S4 Potential energy curves of initial state (metal atom fixed at 0.5 in *b* axis shown by solid circle lines) and final state (metal atom fixed at 0.36 in *b* axis shown by open circle lines) under *b*-axis tensile strain of 7% with different *a*-axis compression including 0%, 1% and 3% for MoTe₂.

Та	ble	S3
Γa	ble	S 3

	Tensile strain	Compression	Energy barrier
	(<i>b</i> axis)	(<i>a</i> ax1s)	(eV/f.u.)
	6%	0	0.818
	6%	1%	0.802
MoTe ₂	6%	3%	0.782
	7%	0	0.790
	7%	1%	0.780
	7%	3.5%	0.748

Table S3 Energy barriers from 2H to 1T' of $MoTe_2$ with different *a*-axis compression. under different *b*-axis tensile strain

Fig. S5 Energy changes of 2H- and 1T'-phase WTe_2 following the *a*-axis expansion (tensile strain) under different *b*-axis compressive strain from -3% to -10%. Note that solid line represents 2H structure and the dash line is for 1T'structure.

Table S4

ase)
(30)

Table S4 Under different compressive strain of *b*-axis, the *a*-axis expansion at the equilibrium state for 2H-phase and 1T' phase of WTe_2

Fig. S6

Fig. S6 Potential energy curves of initial state (metal atom fixed at 0.5 in *b* axis shown by solid circle lines) and final state (metal atom fixed at 0.36 in *b*-axis shown by open circle lines) under *b*-axis compressive strain of 5% with different a-axis expansion including 0% and 1% and under *b*-axis tensile strain of 8% with different *a*-axis expansion including 0% and 2% for WTe₂.

Table S5

	Compressive strain	Expansion	Energy barrier
	(<i>b</i> axis)	(<i>a</i> axis)	(eV/f.u.)
	5%	0	0.772
WTe ₂	5%	1%	0.775
	8%	0	0.724
	8%	2%	0.724

Table S5 Energy barriers from 2H to 1T' of WTe_2 with different *a*-axis expansion under different *b*-axis compressive strain

Fig. S7 Band structures of monolayer 2H-MoTe₂ calculated by PBE/GGA with spinorbit coupling (a), HSE06 (b) and HSE06 with spin-orbit coupling

Fig. S8 Band structures of monolayer 2H-WTe₂ calculated by PBE/GGA with spinorbit coupling (a), HSE06 (b) and HSE06 with spin-orbit coupling

Fig. S9

Fig. S9 Band structures of monolayer 1T-MoTe₂ (a, b) and 1T-MoTe₂ (c, d) calculated by PBE/GGA and HSE06with spin-orbit coupling, respectively