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Figure S1. X-ray photoemission (XPS) spectra of the Al2O3, TiO2, and Al2O3/TiO2 
nanolaminate films, collected from the (a) Al 2p and (b) Ti 2p core levels.
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Figure S2. The X-ray diffraction (XRD) spectra of 50 nm thick Al2O3, TiO2, and Al2O3/TiO2 
nanolaminate films on glass. No peaks were not detected.
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Figure S3. The optical transmittance spectra of the A1T3 films prepared with various 
thicknesses values.

Table S1. The dielectric constants of the Al2O3, TiO2, and Al2O3/TiO2 nanolaminate films.

PEALD based Film Dielectric Constant
Al2O3 7.9
A4T1 11.5
A3T1 13.6
A1T1 15.4
A1T3 23.8
A1T7 25.4
TiO2 29.6



Figure S4. Optical microscope images for PEALD-based films on PEN substrate after 500 
times cyclic bending test with a bending radius of 11 mm. Cracks were observed at thickness 
of 150 nm for all films and 100 nm thick A1T3 film. We confirmed that all PEALD-based 
films were flexible in less than 50 nm thick at bending radius of 11 mm.

Figure S5. (a) Normalized conductance changes and (b) WVTR values of the glass- 
encapsulated Ca test cell as a function of time at 60˚C and 90% RH. The inset shows a 
schematic diagram of the glass-encapsulated Ca test cell.



0 5 10 15 20
10

11

12

13

14

 Al2O3   A4T1  

 A3T1   A1T1
 A1T3   A1T7  
 TiO2

 Glass encapsulation (GE) 
 4 hrs annealing (GE)
 6 hrs annealing (GE)       
 24 hrs annealing (GE)

 

 

Cu
rre

nt
 Ef

fic
ien

cy
 (c

d/
A)

Current Density (mA/cm2)

Figure S6. Current efficiencies of the glass-encapsulated devices and the devices passivated 
with PEALD films.
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Figure S7. Refractive indices of the 50 nm thick PEALD-based films prepared on a Si wafer 
over time in water at room temperature. All PEALD films were grown at 100˚C.


