Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

SI for Li–Na–N–H

Jepsen et al.

Supporting Information

Synthesis and decomposition of Li₃Na(NH₂)₄ and investigations of Li–Na–N–H based systems for hydrogen storage

Lars H. Jepsen^a, Peikun Wang^b, Guotao Wu^b, Zhitao Xiong^b, Flemming Besenbacher^c, Ping Chen^{b*}

and Torben R. Jensen^{a*}

^aCenter for Materials Crystallography, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

^bDalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, P.R. China

^cInterdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.

*Corresponding authors

Figure S1 SR-PXD data collected at RT for LiNH₂-NaNH₂ (3:1) ball milled for 90 min and annealed at 150 °C for 6h (s4), $\lambda = 0.82306$ Å.

Figure S2 FTIR spectra recorded for LiNH₂-NaNH₂ (3:1) after 90 min ball milling (black, s3) and after annealing at 150 °C (green, s4) compared with LiNH₂ (red).

Figure S3 Temperature programmed photographic analysis of $Li_3Na(NH_2)_4$ (s4) during heating to 300 °C (4 °C/min) under argon atmosphere. A liquid is observed on the bottom of the glass vial at 240 °C. At 300 °C, the sample has a yellowish color which may suggest the presence of Li_2NH .

Figure S4 Calorimetric measurement of Li₃Na(NH₂)₄ (s4) heated to 245 °C (0.5 °C /min).

Figure S5 Determination of released NH_3 for $Li_3Na(NH_2)_4$ (s4) during heating from RT to 475 °C (2 °C/min). The black line shows the accumulated NH_3 released, while the red line (differentiated) reveals the rate of change in released NH_3 .

Figure S6 Determination of released NH_3 for LiNH₂ BM 10h (s12) during heating from RT to 475 °C (2 °C/min). The black line shows the accumulated NH_3 released during heating, while the red line (differentiated of black line) shows the rate of change of the NH_3 release.

Figure S7 FTIR measured for $Li_3Na(NH_2)_4$ —LiH (1:4) mixed in a mortar for 5 min (s6, red), ball milled for 1.5 h (s7, blue) and ball milled for 10 h (s8, orange).

Figure S8 Sievert's measurement of $Li_3Na(NH_2)_4$ —LiH (1:4, s8) heated to 340 °C (1 °C/min). The temperature is represented by the dashed line.

Figure S9 PXD data for Li₃Na(NH₂)₄–LiH (1:4, s8) after heating to 340 °C, $\lambda = 1.54056$ Å. Symbols: **L**iNH₂; **A** NaH; **O** Li₃Na(NH₂)₄; **A** Li₂NH; **O** Li₂O.

Figure S10 Sieverts measurements of LiNH₂—NaH (1:1, s10, black line) and NaNH₂—LiH (1:1, s11, blue line) heated to 340 °C (1 °C/min). The temperature is represented by the dashed line.

Figure S11 TPD-MS for LiNH₂—NaH (4:1) during heating from RT to 475 °C (2 °C/min).

Figure S12 PXD data for NaNH₂–LiH (s11) and after heating s11 to 270 °C. Both PXD patterns were measured at RT, $\lambda = 1.54056$ Å. Symbols: \blacksquare LiNH₂; \blacktriangle NaH; \bigcirc Li₃Na(NH₂)₄; \diamond LiNa₂(NH₂)₃; \blacktriangle Li₂NH.

Figure S13 FTIR spectra for NaNH₂–LiH (s11) and after heating s11 to 270 °C. All spectra were collected at RT.

Figure S14 TPD-MS for a) LiNH₂–NaH (s10) and b) NaNH₂–LiH (s11) during heating from RT to 400 °C (2 °C/min).