Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supplementary Information Computational design of donor-bridge-acceptor systems exhibiting pronounced quantum interference effects

Natalie Gorczak¹, Nicolas Renaud¹, Elena Galan^{1,2}, Rienk Eelkema¹, Laurens D. A. Siebbeles¹, and Ferdinand C. Grozema¹

¹Department of Chemical Engineering, Delft University of Technology, Delft ²Present address: Novaled GmbH, Dresden, Germany

Figure 1: Comparison of optical excitation spectra of **PDIim** and **PMI** using TD-DFT with DZP basis set and M06-2X functional (solid) and PBE functional (dashed).

Table 1: Contribution of the HOFO of the hole donor to the initial state with the direct coupling $V_{DB_{HOFO}}$ between donor and bridge

	$V_{DB_{HOFO}}$	HOFO contribution
PDIim (M06-2X)	$0.00 \ \mathrm{eV}$	$100 \ \%$
PDIim (PBE)	$0.00 \ \mathrm{eV}$	83~%
PMI (M06-2X)	-0.11 eV	94 %
PMI (PBE)	$0.08~{\rm eV}$	67~%

Table 2: Contribution of the HOFO of the hole acceptor to the final state with the effective electronic couplings for hole transfer J_{eff} . Note, that a coupling of 1 meV is regarded as the limit of accuracy that can be obtained with DFT.

	HOFO contribution	$J_{ m eff}$
SNS (M06-2X)	98 %	0.1 meV
SNS (PBE)	98~%	-1.6 meV
$lin_carbeth$ (M06-2X)	83~%	39 meV
lin_carbeth (PBE)	$82 \ \%$	65 meV
$cross_carbeth$ (M06-2X)	88 %	-3.8 meV
$\mathbf{cross_carbeth}\;(\mathrm{PBE})$	86~%	2.8 meV