Supplementary material to: Structural Variety beyond Appearance: High-pressure Phases of CrB₄ in comparison with FeB₄

Yunkun Zhang,^a Lailei Wu,^{*a} Biao Wan,^a Yan Zhao,^a Rui Gao,^b Zhiping Li,^b Jingwu Zhang^{*a}, Huiyang Gou^{*cd} and Ho-kwang Mao^{cd}

^a Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004, China.

^b Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.

^c Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

^d Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, USA

Fig. S1 Total energy as a function of unit volume (per f.u.) curves for (a) CrB_4 and (b) FeB_4 .

Fig. S2 Enthalpy difference (relative to *Pnnm* structure) as a function of pressure for $I4_1/acd$ -type and $P2_13$ -type CrB₄ compared with the $mP10-\alpha$ -CrB₄, $mP10-\beta$ -CrB₄, and $oP10-\beta$ -CrB₄.

Fig. S3 Phonon dispersion curves of high pressure phases for CrB₄ and FeB₄. (a) $mP10-\alpha$ -CrB₄; (b) $mP10-\beta$ -CrB₄; (c) $oP10-\beta$ -CrB₄ at 0 GPa; (d) $oP10-\beta$ -CrB₄ at 294 GPa; (e) tI40-FeB₄; (f) cP20-FeB₄. The $oP10-\beta$ -CrB₄ is dynamically unstable at zero pressure with imaginary frequency in the Brillouin Zone. At pressure above 294 GPa, however, the $oP10-\beta$ -CrB₄ becomes dynamically stable with all frequencies become positive. The other phases are dynamically stable at zero pressure with the absence of imaginary phonon frequencies throughout the Brillouin Zone. A supercell with $3\times5\times3$ k-points for $mP10-\alpha$ -CrB₄, with $3\times5\times3$ k-points for $mP10-\alpha$ -CrB₄, with $3\times3\times1$ k-points for tI40-FeB₄, and with $4\times4\times4$ k-points for cP20-FeB₄ were adopted.

	S.G.	C_{11}	<i>C</i> ₂₂	<i>C</i> ₃₃	<i>C</i> ₄₄	C ₅₅	<i>C</i> ₆₆	C_{12}	<i>C</i> ₁₃	<i>C</i> ₂₃	<i>C</i> ₁₅	C ₂₅	C ₃₅	C_{46}
$mP10-\alpha$ -CrB ₄	P2/m	592	490	477	186	225	224	125	179	173	67	-11	95	35
mP10-β-CrB ₄	Pm	580	486	535	105	184	179	106	136	125	29	2	-18	-3

Table SI Calculated elastic constants C_{ij} (GPa) of the *mP*10- α -CrB4 and *mP*10- β -CrB4.