COYAL SOCIETY

Journal Name

ARTICLE

ESI for:

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

CHARMM force field parameterization protocol for selfassembling peptide amphiphiles: The Fmoc moiety

I. Ramos Sasselli,^a R. V. Ulijn^{a,b} and T. Tuttle^{a,*}

* E-mail: tell.tuttle@strath.ac.uk

^{a.} Pure and Applied Chemistry Department, WestCHEM. University of Strathclyde. 295 Cathedral Street, Glasgow, G1 1XL, UK.

^b Advanced Science Research Center (ASRC) and Hunter College, City University of New York, 85 St Nicholas Terrace, New York, New York 10031, USA.

ARTICLE

Here the topology and parameters information of the Fmoc moiety for the CHARMM force field is included in the NAMD format:

CHARMM TOPOLOGY (NAMD Format)

!hydroge	ens		
MASS	1	HGA2	1.00800
MASS	2	HGR61	1.00800
!carbons	;		
MASS	3	CG201	12.01100
MASS	4	C2R61	12.01100
MASS	5	CG2R66	12.01100
MASS	6	C2R67	12.01100
MASS	7	C2RC0	12.01100
MASS	8	CG321	12.01100
MASS	9	C3C52	12.01100
!oxygens	;		
MASS	10	OG2D1	15.99940
MASS	11	0G302	15.99940

DEFA FIRS NONE LAST NONE AUTO ANGLES DIHE

RESI	FMO			0.00)								
GROUI	>												
АТОМ	C1	C2R61	1	-0.	110	!			Н4		н	17	
АТОМ	Н1	HGR61	1	0.	135	!			1				
АТОМ	C2	C2R61	1	-0.	110	!			Ċ4		Ċ	7	
АТОМ	Н2	HGR6	1	0.	135	!		1	/ \		/		
АТОМ	С3	C2R61	1	-0.	110	!	Н3-	c3	Ì	25	c6 [′]	С8н8	3
АТОМ	Н3	HGR61	1	0.	135	!						1	
АТОМ	C4	C2R61	1	-0.	110	!	н2-	c2	Ċ	:13	c11	С9Н9)
АТОМ	Н4	HGR61	1	0.	135	!		\'	/	\backslash	/ \	11	
АТОМ	C5	C2R67	7	-0.	100	!			C1	C	L2 C	:10	
АТОМ	C6	C2R67	7	-0.	100	!				/	\mathbf{X}		
АТОМ	С7	C2R61	1	-0.	110	!		ŀ	11	H21	Н1	0	
АТОМ	Н7	HGR61	1	0.	135	!							
АТОМ	C8	C2R61	1	-0.	110	!			ŀ	+F1	-CF1	HF2	
АТОМ	н8	HGR61	1	0.	135	!							
АТОМ	С9	C2R61	1	-0.	110	!					OF1		
АТОМ	н9	HGR61	1	0.	135	!							
ATOM	C10	C2R61	1	-0.	110	!					C==0F	2	
ATOM	н10	HGR61	1	0.	135	!							
АТОМ	C11	C2RC	0	-0.	050	!		٦	ΓΟ ΑΝ	1INO	ACID	RESIDUE	NH
АТОМ	C12	C3C52	2	0.	150								
АТОМ	Н21	HGA2	_	0.	090								
ΑΤΟΜ	C13	C2RC)	-0.	050								
GROUI	2												
АТОМ	CF1	CG321	1	0.	240								
АТОМ	HF1	HGA2		0.	220								
АТОМ	HF2	HGA2		0.	220								
АТОМ	0F1	OG302	2	-0.	920								
АТОМ	С	CG201	1	0.	950								
АТОМ	OF2	OG2D1	1	-0.	850								
BOND	C1	c2 c2	2	C 3	C 3	C4	C4	C5	C5	C6			
BOND	C6	c7 c7	7	C8	C8	C9	C9	c10	C10	C11			
BOND	C11	C12 C1	12	C13	C13	C1	C5	C13	C6	C11			
BOND	C1	H1 C2	2	Н2	C3	Н3	C4	Н4	С7	Н7			
BOND	C8	H8 C9	9	н9	C10	н10	C12	Н21	C12	CF1			
BOND	CF1	HF1 CF	F1	HF2	CF1	OF1	OF1	С					
DOUBI	LE C	OF2											
BOND	С	+N											

IC C5	C13	C1	C2	0.0000	0.00	0.00	0.00	0.0000
IC C1	C13	C5	C4	0.0000	0.00	0.00	0.00	0.0000
IC C1	3 C5	C4	C3	0.0000	0.00	0.00	0.00	0.0000
IC C1	C5	*C13	C12	0.0000	0.00	180.00	0.00	0.0000
IC C4	C13	*C5	C6	0.0000	0.00	180.00	0.00	0.0000
IC C1	3 C5	C6	C11	0.0000	0.00	5.00	0.00	0.0000
IC C5	C11	*C6	С7	0.0000	0.00	180.00	0.00	0.0000
IC C7	C6	C11	C10	0.0000	0.00	0.00	0.00	0.0000
IC C1	1 C6	С7	C8	0.0000	0.00	0.00	0.00	0.0000
IC C6	C11	C10	C9	0.0000	0.00	0.00	0.00	0.0000
IC C1	3 C2	*C1	Н1	0.0000	0.00	180.00	0.00	0.0000
IC C1	C3	*C2	н2	0.0000	0.00	180.00	0.00	0.0000
IC C2	C4	*C3	Н3	0.0000	0.00	180.00	0.00	0.0000
IC C3	C5	*C4	Н4	0.0000	0.00	180.00	0.00	0.0000
IC C6	C8	*C7	Н7	0.0000	0.00	180.00	0.00	0.0000
IC C7	C9	*C8	н8	0.0000	0.00	180.00	0.00	0.0000
IC C8	C10	*C9	н9	0.0000	0.00	180.00	0.00	0.0000
IC C9	C11	*C10	н10	0.0000	0.00	180.00	0.00	0.0000
IC C1	1 C13	*C12	Н21	0.0000	0.00	120.00	0.00	0.0000
IC C1	1 C13	*C12	CF1	0.0000	0.00	-120.00	0.00	0.0000
IC C1	2 CF1	C11	C10	0.0000	0.00	180.00	0.00	0.0000
IC C1	2 CF1	C13	C1	0.0000	0.00	180.00	0.00	0.0000
IC CF	1 C11	*C12	C13	0.0000	0.00	120.00	0.00	0.0000
IC OF	1 CF1	C12	HF1	0.0000	0.00	180.00	0.00	0.0000
IC OF	1 HF2	*CF1	C12	0.0000	0.00	180.00	0.00	0.0000
IC OF	2 +N	*C	OF2	0.0000	0.00	180.00	0.00	0.0000
IC +N	С	OF1	CF1	0.0000	0.00	180.00	0.00	0.0000
IC C	0F1	CF1	HF1	0.0000	0.00	0.00	0.00	0.0000
IC C	0F1	CF1	HF2	0.0000	0.00	120.00	0.00	0.0000
IC C	OF1	CF1	C12	0.0000	0.00	240.00	0.00	0.0000

PARAMETERS (NAMD Format)

BONDS

C2R61 C2R61 C2R61 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 C3C52 CG321 CG321 CG201 CG201 CG201 CG201 CG201 NH1 CT1 CT2 HB HA OH1 OH1 OB OH1 ANGLES	HGR61 C2R61 C2R67 C2RC0 C2R67 C2RC0 C3C52 HGA2 C3C52 HGA2 OG302 OG302 OG302 OG302 OG302 OG302 OG302 OG302 CT1 CT1 CT1 CT1 CT2 CT2 H CD CC2 CD	340.00 305.00 305.00 300.00 300.00 305.00 307.00 195.00 309.00 320.00 340.00 370.00 440.00 320.00 222.50 330.00 222.50 330.00 242.00 2545.00 750.00 230.00	1.0800 1.3750 1.3750 1.3600 1.4200 1.4200 1.5200 1.1000 1.5180 1.1110 1.4400 1.3450 0.9970 1.4300 1.5220 1.5380 1.0800 1.1110 1.4200 1.2200 1.4000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CG201	OG302	CG321	55.00	$109.00 \\ 125.90 \\ 114.00 \\ 115.10 \\ 115.10 \\ 106.80 $
OG2D1	CG201	OG302	90.00	
C2RC0	C3C52	CG321	38.00	
C3C52	CG321	OG302	75.70	
C3C52	CG321	HGA2	38.50	
CG321	C3C52	HGA2	38.50	

ARTICLE

NH1 NH1 CG201 C2R61 C2R61 C2R61 C2R67 C2R67 C2R67 C2R61 C2R67 C2R61 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 OG302 HGA2 C2RC0 C2RC0 HB H OH1 NH1 H HA OH1 CG201 HB CT2 HA OH1 NH1	CG201 CG201 NH1 C2R61 C2R61 C2R61 C2R61 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 C2R67 C2R61 C2R67 C2R67 C2R67 C2R7 C2R7 C2R7 C2R7 C2R7 C2R7 C2R7 C2R	OG302 OG2D1 H C2R61 C2R67 C2RC0 HGR61 HGR61 HGR61 C2R67 C2RC0 C2R67 C3C52 HGA2 HGA2 CD CD CT1 OH1 OB HB CD CT1 CT1 CT1 CT1 CT1 CT1 CT2 CD CD CT1 CT1 CT2 CD CT1 CT2 CD CT2 CD CT1 CT2 CD CT2 CD CT2 CD CT1 CT2 CT2 CD CT2 CD CT2 CT2 CD CT2 CT2 CD CT2 CT2 CD CT2 CT2 CT2 CT2 CT2 CT2 CT2 CT2 CT2 CT2	$\begin{array}{c} 80.00\\ 80.00\\ 34.00\\ 40.00\\ 50.00\\ 30.00\\ 30.00\\ 50.00\\ 50.00\\ 50.00\\ 50.00\\ 50.00\\ 50.00\\ 10.00\\ 60.00\\ 35.50\\ 40.00\\ 35.50\\ 40.00\\ 35.50\\ 40.00\\ 35.00\\ 55.00\\ 50.00\\ 55.00\\ 50.00\\ 55.00\\ 50.00\\ 55$	$\begin{array}{c} 116.50\\ 122.50\\ 123.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 120.00\\ 100.00\\ 109.50\\ 109.50\\ 109.50\\ 109.50\\ 109.50\\ 114.00\\ 109.50\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 115.00\\ 109.50\\ 113.50\\ 113.50\\ 113.50\\ 123.00\\ 100.00\\ 108.89\\ 113.50\\ 113.50\\ 100.00\\ 100.00\\ 100.00\\ 108.89\\ 113.50\\ 100.00\\$	35.00 2.41620 22.00 2.15250 22.00 2.14600 5.40 1.80200 20.00 2.44200 210.00 2.26200 22.53 2.17900 5.40 1.80200
DIHEDR C2R61 C2R67 C2RC0 C3C52 HGA2 G321 CG321 HGA2 OG2D1 C2R67 C2R67 C2	ALS C2RC0 C3RC0 C3C52 C3C61 C2R67 C2R6	C3C52 C3C52 CG321 CG321 CG321 CG321 CG201 CG201 CG201 C2R61 C2R61 C2R61 C2R61 C2R61 C2R61 C2R61 C2R61 C2R67 C2R52 C2R52 C3C52	CG321 CG321 HGA2 OG302 CG201 HGA2 OG2D1 CG201 C2RC0 C2R61 C2R67 C2R60 HGR61 HGR61 HGR61 HGR61 HGR61 HGR61 C2R67 C2R61 C2R67 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R67 C2R61 C2R61 C2R67 C2R61 C2	0.5000 0.5000 0.1950 0.0000 0.1400 0.1400 0.9000 2.8500 2.0500 1.0000 3.1000 3.1000 3.0000 4.2000 4.2000 3.0000 2.4000 3.1000 3.1000 3.1000 3.1000 3.1000 3.0000 2.500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.500	3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 1 0.00 2 180.00 2 180.00 3 180.00 3 180.00 3 180.00 3 180.00 3 180.00

C2R67 HGR61 HGR61 CG321 OG302 OG2D1 OG302 OG2D1 CG201 CG201 H HB H H H H H X X X X X X	C2RC0 C2R61 C2R61 OG302 CG201 CG201 CG201 CG201 CG201 NH1 NH1 NH1 NH1 NH1 NH1 OH1 OH1 OH1 OH1 CT1 CD CT1 CT2	C3C52 C2R67 C2RC0 CG201 CG201 NH1 NH1 NH1 CT1 CT1 CT1 CT1 CT1 CT1 CT1 CT1 CT1 CT	HGA2 C2RC0 C2R67 NH1 H H CT1 CT1 CT2 CD HB CT2 CD H CT1 CT1 CT1 CT1 CT1 CT1 X X X X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
IMPROP	ERS			
CG2O1 C2R61 NH1 OB	X X X X	X X X X	OG2D1 HGR61 H CD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
NONBON cutnb	DED nbx 14.0 ct	mod 5 ofnb 12	atom cdi .0 ctonn	el shift vatom vdistance vswitch - b 10.0 eps 1.0 e14fac 1.0 wmin 1.5
HGA2 HGR61 CG201 C2R67 C2RC0 CG321 C3C52 OG2D1 OG302 H NH1 HA HB OH1 OB CT1 CT2 CD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0350 0.0300 0.1100 0.0700 0.0990 0.0560 0.1200 0.1200 0.0200 0.0220 0.0220 0.1221 0.1200 0.0220 0.0220 0.1521 0.1200 0.0200 0.0550 0.0700	$\begin{array}{c} 1.3400\\ 1.3582\\ 2.0000\\ 1.9924\\ 1.9924\\ 1.8600\\ 2.0100\\ 2.0200\\ 1.7000\\ 1.6500\\ 0.2245\\ 1.8500\\ 1.3200\\ 1.3200\\ 1.3200\\ 1.7700\\ 1.7700\\ 2.2750\\ 2.1750\\ 2.0000\end{array}$	0.0 -0.01 1.90 0.0 -0.01 1.90 0.0 -0.12 1.40 0.0 -0.20 1.55 0.0 -0.12 1.40 0.0 -0.01 1.90 0.0 -0.01 1.90

CD END

Kow DETERMINATION

The experimental determination of the Fmoc-S-OMe K_{ow} was carried out using the shake-flask method. The concentrations of Fmoc-S-OMe in octanol and water were determined by fluorescence spectroscopy. The emission at 304 nm was calibrated in both solvents (Figure ESI 1) using samples of known concentrations. Emission was measured with a Jasco FP-6500 spectrofluorometer at 304 nm, using medium response with an excitation bandwidth of 3nm and an emission bandwidth of 3nm. Samples were measured with 1 cm pathlength cuvettes.

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

Figure ESI-1. Calibration of the emission intensity of Fmoc-S-OMe in octanol (Red) and in water (Blue) at different concentrations. The range of concentrations was estimated in previous experiments.

Samples for the partition coefficient determination used 2 mL of aqueous Fmoc-S-OMe stock solution (2.01 μ M). After mixing them with 2 mL of octanol the mixture was shaken vigorously during 30 s and left resting for 2 hours. 1 mL of each phase was taken to measure fluorescence. Averaged results of 9 samples were used for the final determination of the K_{ow}.

	Intensity	at 304 nm	Concentra	Concentration (μM)		
	water	octanol	water	octanol		
1	40	706	0.09	1.99	21.1	
2	36	692	0.07	1.95	27.3	
3	35	713	0.07	2.01	30.2	
4	39	704	0.09	1.99	23.2	
5	35	705	0.07	1.99	30.5	
6	42	770	0.10	2.18	21.7	
7	35	678	0.07	1.91	29.9	
8	45	701	0.12	1.98	16.8	
9	47	726	0.13	2.05	15.7	
Average			0.09	2.00	23.6	
STD Dev			0.02	0.08	5.5	

Table ESI-1. Experimental results for the determination of the Fmoc-S-OMe partition coefficient (K_{ow}).

6 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

ARTICLE

The final log P or log K_{ow} value is -1.4±0.1. The confidence interval was calculated using equation Eq. ESI. 1:

$$Conf. Interval = \frac{s \cdot t(95\%)}{\sqrt{n}}$$

Where s is the standard deviation, t(95%) is the confidence coefficient for a 95% of confidence level and n is the number of samples used.

Fmoc-S-OMe SOLVATION FREE ENERGIES IN OCTANOL AND IN WATER

The free energy profile as a function of the decoupling of the Fmoc-S-OMe molecule from each solvent is shown in Figure ESI-2. The difference between the starting and the final point gives the solvation free energy of the solute in each solvent (Table ESI-2).

Figure ESI-2. Free energy profiles of the decoupling of Fmoc-S-OH to water and to octanol using MD-FEP.

Table ESI-2. MD-FEP results of th	e solvation free energies and the fina	l water/octanol partition free energy (ΔC	G _{ow}).
-----------------------------------	--	---	--------------------

ΔG_{water}	$\Delta G_{octanol}$	$\Delta \mathbf{G}_{\mathbf{ow}}$
-28.3 ± 0.1	-29.3 ± 0.3	-1.0 ± 0.2

Fmoc-S-OMe SOLVATION FREE ENERGIES USING FEP: Parameters Study

Prior to the calculation of the final values for the solvation free energies with the FEP different parameters were checked (Table ESI-3). To check the reliability of the results the overlap between the forward and backward simulation was evaluated (Figure ESI-3). It can be seen how the set of FEP parameters used for the calculation of the solvation free energies give the best overlap between both, the forward and the backward, simulations.

Table ESI-3. FEP parameters used in the calculations which results are shown in Figure ESI-3. * The parameters P-4 were used for final results presented in this study.

Parameters Set	$d\lambda$	Number of windows	Equilibration steps/window	Total steps/window
P-1	0.1	10	2,500	52,500
P-2	0.1	10	30,000	630,000
P-3	0.1	10	500,000	5,500,00
P-4	0.0625	16	250,000	4,250,000

Figure ESI-3. Forward (straight lines) and backward (dashed lines) free energy profiles for the solvation of Fmoc-S-OMe in octanol (a) and in water (b) with the different FEP parameters shown in Table ESI-3.

Fmoc-S-OH PARTICLE SIZE DISTRIBUTION

The AFM image published by Abul-Haija *et al.* was used to carry out the particle size distribution analysis of the Fmoc-S-OH micelles.¹

Figure ESI-4. Particle size distribution analysis made on Fmoc-S-OH AFM image from ref. 1.

Figure ESI-5. Snapshots of the Fmoc-S-OH simulation (Fmoc in red and S-OH in blue). The last snapshot (220 ns) shows also the periodic images in the *xy*-plane for clarity.

Fmoc-Y-OH MD SIMULATION

Figure ESI-6. Snapshots of the Fmoc-Y-OH simulation (Fmoc in red and Y-OH in blue). The last snapshot (300 ns) shows also the periodic images in the *xy*-plane for clarity.

1. Y. M. Abul-Haija, S. Roy, P. W. Frederix, N. Javid, V. Jayawarna and R. V. Ulijn, Small, 2014, 10, 973-979.