Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supplementary Information For

Synthesis of α-MnO₂ nanowires modified by Co₃O₄ nanoparticles as a high-performance catalyst for rechargeable Li-O₂ batteries

Fan Wang,^a Zhaoyin Wen*a, Chen Shena, Xiangwei Wua and Jianjun Liub

^a CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai 200050, People's Republic of China.

^b State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.

* Corresponding author. Fax: +86-21-52413903 Tel: +86-21-52411704 E-mail:

zywen@mail.sic.ac.cn

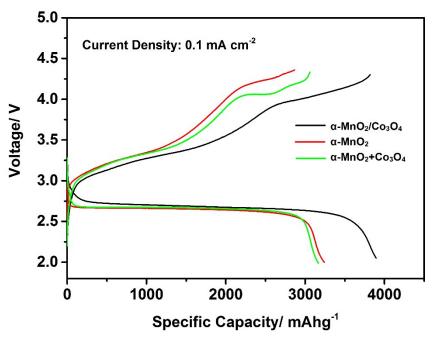
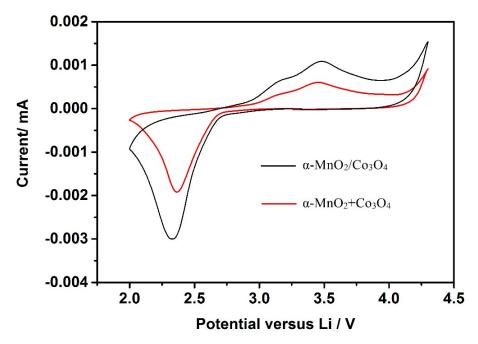



Fig. S1 Initial charge-discharge profiles of α-MnO₂/Co₃O₄, α-MnO₂ and α-MnO₂/Co₃O₄.

Fig. S2 CV curves of α-MnO₂/Co₃O₄ and α-MnO₂+Co₃O₄ cathodes at a scan rate of 0.2 mV s⁻¹ between 2.0 and 4.3 V.

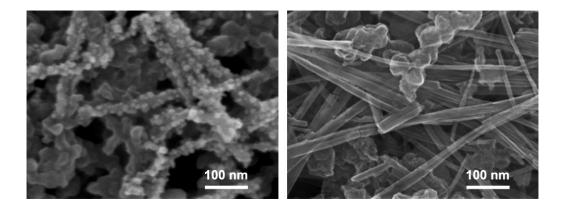


Fig. S3 SEM images of α -MnO₂/Co₃O₄ (a) and α -MnO₂+Co₃O₄ (b) cathodes after discharge with a limited capacity of 1000 mAh·g⁻¹.