Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Electronic Supplementary Information

Li₃AlSiO₅: The First Aluminosilicate as a Potential Deep-Ultraviolet Nonlinear Optical Crystal with the Quaternary Diamond-like Structure

Xinglong Chen,^{a,b} Fangfang Zhang,^{*,a} Lili Liu,^{a,b} Bing-Hua Lei,^{a,b} Xiaoyu Dong,^a Zhihua Yang,^{*,a} Hongyi Li, ^{a,c} Shilie Pan^{*,a}

^aKey Laboratory of Functional Materials and Devices for Special Environments,

Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences,

Xinjiang Key Laboratory of Electronic Information Materials and Devices, No. 40-1, South Beijing Road, Urumqi 830011, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

^cXinjiang Products Quality Supervision & Inspection Institute of Technology, Urumqi 830011, China

*To whom correspondence should be addressed.

E-mail: ffzhang@ms.xjb.ac.cn, zhyang@ms.xjb.ac.cn, slpan@ms.xjb.ac.cn (Shilie

Pan);

Phone: (+86)991-3674558, Fax: (+86)991-3838957

CONTENTS

Table S1.	Atomic coordinates, equivalent isotropic displacement parameters and bond valence	ce
	sums for Li3AlSiO5	.S2
Table S2.	Selected bond distances (Å) and angles (deg.) for Li ₃ AlSiO ₅	. S 3
Table S3.	State energies of the lowest conduction band and the highest valence band at same	;
	k-points of Li ₃ AlSiO ₅ calculated by LDA (a) and PBE0 (b)	. S4
Fig. S1.	Optical images (a) and observed theoretical morphology (b) of Li ₃ AlSiO ₅	.S5
Fig. S2.	Thermal ellipsoid plot (50% probability) of the asymmetric unit of Li ₃ AlSiO ₅	S5
Fig. S3.	The arrangement of $[AlSiO_5]^{3-}$ slabs view along the a-axis (a) and the c-axis (b)	.S5
Fig. S4.	IR spectrum of Li ₃ AlSiO ₅	. S6
Fig. S5.	UV-Vis-NIR diffuse reflectance spectrum of Li ₃ AlSiO ₅	S 6
Fig. S6.	TG and DSC curves of Li ₃ AlSiO ₅	. S6
Fig. S7.	Calculated band structure of Li ₃ AlSiO ₅ by DFT (a) and PBE0 (b).	.S7

Atoms	Wyck.	x	у	Z	U(eq)	BVS
Al(1)	4 <i>a</i>	3284(1)	7998(1)	3979(3)	7(1)	2.75
Li(1)	4 <i>a</i>	-3280(7)	8031(3)	8970(30)	13(1)	0.97
Li(2)	4 <i>a</i>	6650(6)	9960(2)	8940(30)	9(1)	1.01
Li(3)	4 <i>a</i>	1702(7)	956(3)	8960(20)	14(1)	0.93
Si(1)	4 <i>a</i>	1668(1)	9015(1)	8945(2)	6(1)	3.93
O (1)	4 <i>a</i>	3120(3)	9864(1)	7990(3)	9(1)	1.91
O(2)	4 <i>a</i>	-1217(4)	8979(1)	8034(4)	10(1)	1.91
O(3)	4 <i>a</i>	3109(3)	8146(1)	7656(3)	10(1)	2.00
O(4)	4 <i>a</i>	1924(4)	8904(1)	2384(4)	9(1)	2.04
O(5)	4 <i>a</i>	1454(3)	7102(1)	3097(3)	9(1)	1.94

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) and bond valence sums (BVS) for Li₃AlSiO₅. *U*(eq) is defined as one third of the trace of the orthogonalized *U*_{ij} tensor.

Table S2. Selected bond lengths	(Å) a	nd angles ()for	Li ₃ AlSiO ₅ .
---------------------------------	-------	-------------	------	--------------------------------------

Tuble 52. Selected bond lengths (77) and angles (710) List holos.			
Al(1)-O(5)#1	1.749(2)	O(4)#2-Al(1)-O(3)	107.72(10)
Al(1)-O(5)	1.7533(19)	O(2)-Li(1)-O(5)#9	110.9(5)
Al(1)-O(4)#2	1.759(2)	O(2)-Li(1)-O(3)#10	114.1(4)
Al(1)-O(3)	1.776(3)	O(5)#9-Li(1)-O(3)#10	104.4(4)
Li(1)-O(2)	1.892(5)	O(2)-Li(1)-O(3)#11	114.1(4)
Li(1)-O(5)#9	1.990(14)	O(5)#9-Li(1)-O(3)#11	103.6(4)
Li(1)-O(3)#10	2.033(6)	O(3)#10-Li(1)-O(3)#11	108.8(4)
Li(1)-O(3)#11	2.072(6)	O(1)-Li(2)-O(2)#4	116.9(3)
Li(2)-O(1)	1.942(5)	O(1)-Li(2)-O(1)#14	107.6(5)
Li(2)-O(2)#4	1.952(5)	O(2)#4-Li(2)-O(1)#14	107.0(4)
Li(2)-O(1)#14	1.959(14)	O(1)-Li(2)-O(4)#7	109.8(4)
Li(2)-O(4)#7	2.062(7)	O(2)#4-Li(2)-O(4)#7	112.0(4)
Li(3)-O(1)	1.916(5)	O(1)#14-Li(2)-O(4)#7	102.4(4)
Li(3)-O(2)#12	1.969(11)	O(1)-Li(3)-O(2)#12	109.7(4)
Li(3)-O(5)#15	2.075(5)	O(1)-Li(3)-O(5)#15	121.8(3)
Li(3)-O(4)#6	2.086(6)	O(2)#12-Li(3)-O(5)#15	102.4(3)
Si(1)-O(1)	1.597(2)	O(1)-Li(3)-O(4)#6	111.8(3)
Si(1)-O(2)	1.599(2)	O(2)#12-Li(3)-O(4)#6	103.3(3)
Si(1)-O(4)	1.659(2)	O(5)#15-Li(3)-O(4)#6	106.2(3)
Si(1)-O(3)	1.672(2)	O(1)-Si(1)-O(2)	114.70(9)
O(5)#1-Al(1)-O(5)	114.14(8)	O(1)-Si(1)-O(4)	109.22(10)
O(5)#1-Al(1)-O(4)#2	111.39(10)	O(2)-Si(1)-O(4)	110.20(11)
O(5)-Al(1)-O(4)#2	107.69(11)	O(1)-Si(1)-O(3)	109.89(11)
O(5)#1-Al(1)-O(3)	107.52(10)	O(2)-Si(1)-O(3)	108.21(10)
O(5)-Al(1)-O(3)	108.18(10)	O(4)-Si(1)-O(3)	104.08(9)

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+3/2,z	#2 x,y,z-1	#3 x+1/2,-y+3/2,z-1
#4 x+1,y,z	#5 x+1,y,z-1	#6 -x,-y+2,z-1/2
#7 -x+1,-y+2,z-1/2	#8 -x+1/2,y-1/2,z-1/2	#9 x-1/2,-y+3/2,z+1
#10 x-1,y,z	#11 x-1/2,-y+3/2,z	#12 -x,-y+2,z+1/2
#13 x-1,y,z+1	#14 -x+1,-y+2,z+1/2	#15 -x+1/2,y+1/2,z+1/2
#16 x,y,z+1		

Compound	K-piont	H-VB(eV)	L-CB(eV)
	G (0.000, 0.000, 0.000)	-0.10141	6.05443
	Z (0.000,0.000, 0.500)	-0.01463	7.85416
	T (-0.500, 0.000, 0.500)	-0.23281	7.99235
Li ₃ AlSiO ₅	Y (-0.500, 0.000, 0.000)	-0.00719	7.63515
	S (-0.500,0.500, 0.000)	-0.01032	7.70946
	X (0.000,0.500, 0.000)	-0.11899	6.31007
	U (0.000,0.500, 0.500)	0	7.8581
	R (-0.500,0.500, 0.500)	-0.23322	7.98436
(b)			
Compound	K-piont	H-VB(eV)	L-CB(eV)
	G (0.000, 0.000, 0.000)	-0.20482	7.28592
	Z (0.000,0.000, 0.500)	-0.00524	9.0722
	T (-0.500, 0.000, 0.500)	-0.23281	9.8446
Li ₃ AlSiO ₅	Y (-0.500, 0.000, 0.000)	-0.0521	7.63515
	S (-0.500,0.500, 0.000)	-0.05351	9.04194
	X (0.000,0.500, 0.000)	-0.19958	7.52171
	U (0.000,0.500, 0.500)	0	9.07362
	R (-0.500,0.500, 0.500)	-0.20842	9.84183

Table S3 State energies (eV) of the lowest conduction band (L-CB) and the highest valence band (H-VB) at same k-points of Li_3AlSiO_5 calculated by LDA (a) and PBE0 (b), respectively.

(a)

Fig.S1 (a) Optical images of Li_3AlSiO_5 by spontaneous crystallization; (b) Observed theoretical morphology of Li_3AlSiO_5 .

Fig. S2 Thermal ellipsoid plot (50% probability) of the asymmetric unit of Li₃AlSiO₅.

Fig. S3 The arrangement of $[AlSiO_5]^{3-}$ slabs view along the a-axis (**a**) and the c-axis (**b**).(The green tetrahedra represent AlO₄; the purple tetrahedra represent SiO₄)

Fig. S4 IR spectrum of Li₃AlSiO₅.

Fig. S5 UV-Vis-NIR diffuse reflectance spectrum of Li₃AlSiO₅.

Fig. S7 Calculated band structure of Li_3AlSiO_5 by DFT (a) and PBE0 (b).