ARTICLE TYPE

Supplementary information: First principles thermodynamical modeling of the binodal and spinodal curves in lead chalcogenides

Demet Usanmaz,^{*a,b*} Pinku Nath,^{*a,b*} Jose J. Plata,^{*a,b*} Gus L. W. Hart,^{*c,b*} Ichiro Takeuchi,^{*d,e,b*} Marco Buongiorno Nardelli,^{*f,b*} Marco Fornari,^{*g,b*} and Stefano Curtarolo, *^{*h,b*}

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

SI Convergence tests

Figure S1 Convergence test for consolute temperature using as variable the number of total explored configurations (DFT+CE) and considering only HSS for the calculation of the interaction parameter.

SII CE influence

^a Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.

^b Center for Materials Genomics, Duke University, Durham, NC 27708, USA. ^c Department of Physics and Astronomy, Brigham Young University, Provo,

Utah 84602, USA. ^d Center for Nanophysics and Advanced Materials, University of Maryland,

College Park, Maryland 20742, USA.

^e Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA.

^{*f*} Department of Physics and Department of Chemistry, University of North Texas, Denton TX, USA.

^g Department of Physics, Central Michigan University, Mount Pleasant, MI 48858, USA.

^h Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham NC, 27708 USA Fax: 919-660-8963; Tel: 919-660-5506; E-mail: stefano@duke.edu

Figure S2 Consolute temperature using as variable the number of DFT energies and considering an average of the whole set of points to obtain the interaction parameter.

SIII Fitting parameters

	L ₀ (eV/atom)	L ₁ (eV/atom)	L ₂ (eV/atom)
$PbSe_{1-x}Te_x$	1.167×10^{-1}	-9.365×10 ⁻²	7.162×10^{-2}
$PbS_{1-x}Te_x$	3.118×10^{-1}	-2.600×10^{-1}	1.701×10^{-1}
$PbS_{1-x}Se_x$	4.251×10^{-2}	-2.744×10^{-2}	1.515×10^{-2}

 Table S1 Fitting parameters obtained from formation enthalpy

 values of highly symmetric structures (HSS) to evaluate the

 interaction parameter of lead chalcogenide pseudobinary systems

SIV Interaction parameter

References

- 1 H. Liu and L. L. Y. Chang, Mineral. Mag., 1994, 58, 567-578.
- 2 N. Boukhris, H. Meradji, S. Ghemid, S. Drablia and F. E. H. Hassan, *Phys. Scripta*, 2011, **83**, 065701–065710.

Figure S3 (a) Formation enthalpies of the PbSe-PbTe structures using DFT calculations (\bigcirc) and CE technique (\square). Average points are represented by \triangle and the fitting using whole set of points (DFT+CE) to obtain the interaction parameter is plotted with a blue dashed line. (b) Binodal and spinodal curves from TM using average (- and $-\cdot-$), and MC simulations ($\cdot\cdot$), compared with experimental data¹ ($-\cdot\cdot-$) and the previous theoretical model (--) from Boukhris *et al.*²