
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Trigonal Cu₂-II-Sn-VI₄ (II=Ba, Sr and VI=S, Se) Quaternary Compounds for Earth-Abundant Photovoltaics

Feng Hong,*,+,‡ Wenjun Lin,† Weiwei Meng,‡,§ and Yanfa Yan*,‡

Supporting Information

Figure S1. Thermodynamically stable range at $\mu_{Cu} = -0.2$ eV plane for (a) Cu_2BaSnS_4 , (b) Cu_2SrSnS_4 , (c) $Cu_2BaSnSe_4$ and (d) $Cu_2SrSnSe_4$, respectively.

[†]Department of Physics, Shanghai University, Shanghai 200444, China

[‡]Department of Physics and Astronomy, and Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, USA

[§]School of Physics and Technology, Wuhan University, Wuhan, 430072, China

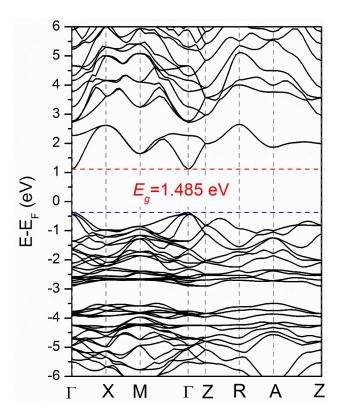
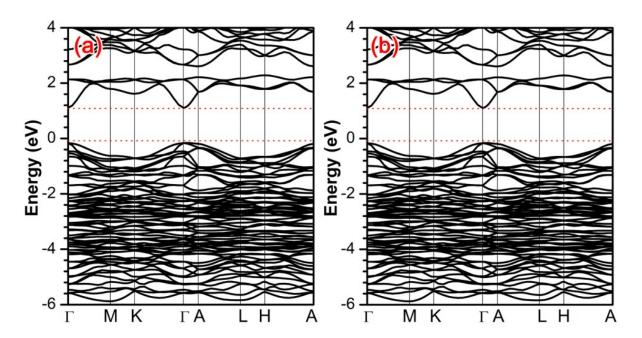
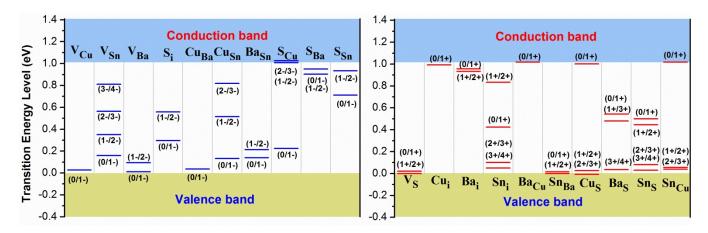




Figure S2. HSE calculated band structure of kesterite Cu₂ZnSnS₄.

Figure S3. HSE calculated band structures for (a) Cu₂BaSnSe₄ and (b) Cu₂SrSnSe₄ with P3₁ structures, respectively.

Figure S4. GGA+U calculated (U=6 eV for Cu 3*d* orbital) transition energy levels of (a) acceptor-like and (b) donor-like intrinsic defects in Cu₂BaSnS₄.