Supplementary information of

Computational study on donor-acceptor optical markers for Alzheimer's disease: a game of charge

transfer and electron delocalization.

by

Francesca Peccati, Marta Wiśniewska, Xavier Solans-Monfort,

Mariona Sodupe

^a Departament de Química, Universitat Autònoma de Barcelona, Edifici Cn, 08193

– Bellaterra Spain.

^b Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097

Warsaw, Poland.

mariona.sodupe@uab.cat

<u>xavier.solans@uab.cat</u>

Table S1. Bond lengths (Å) of DANIR-2a, -2b and -2c at the S_0 and S_1 optimized geometries.

Bond lengths (Å) S ₀	2a	2b	2c	Bond lengths (Å) S ₀	2a	2b	2c
1	1.42	1.42	1.41	8	1.36	1.35	1.35
2	1.38	1.38	1.38	9	1.43	1.43	1.43
3	1.41	1.41	1.40	10	1.43	1.36	1.36
4	1.41	1.41	1.40	11	-	1.43	1.42
5	1.38	1.38	1.38	12	-	1.43	1.36
6	1.41	1.41	1.41	13	-	-	1.43
7	1.46	1.45	1.45	14	-	-	1.43
Bond lengths (Å) S1	2a	2b	2c	Bond lengths (Å) S1	2a	2b	2c
Bond lengths (Å) S ₁ 1	2a 1.42	2b 1.42	2c 1.42	Bond lengths (Å) S ₁ 8	2a 1.42	2b 1.39	2c 1.39
Bond lengths (Å) S ₁ 1 2	2a 1.42 1.37	2b 1.42 1.37	2c 1.42 1.37	Bond lengths (Å) S ₁ 8 9	2a 1.42 1.41	2b 1.39 1.40	2c 1.39 1.40
Bond lengths (Å) S ₁ 1 2 3	2a 1.42 1.37 1.43	2b 1.42 1.37 1.43	2c 1.42 1.37 1.42	Bond lengths (Å) S ₁ 8 9 10	2a 1.42 1.41 1.42	2b 1.39 1.40 1.40	2c 1.39 1.40 1.39
Bond lengths (Å) S1 1 2 3 4	2a 1.42 1.37 1.43 1.43	2b 1.42 1.37 1.43 1.42	2c 1.42 1.37 1.42 1.42	Bond lengths (Å) S1 8 9 10 11	2a 1.42 1.41 1.42 -	2b 1.39 1.40 1.40 1.42	2c 1.39 1.40 1.39 1.40
Bond lengths (Å) S1 1 2 3 4 5	2a 1.42 1.37 1.43 1.43 1.37	2b 1.42 1.37 1.43 1.42 1.37	2c 1.42 1.37 1.42 1.42 1.37	Bond lengths (Å) S1 8 9 10 11 11	2a 1.42 1.41 1.42 - -	2b 1.39 1.40 1.40 1.42 1.42	2c 1.39 1.40 1.39 1.40 1.40
Bond lengths (Å) S1 1 2 3 4 5 5 6	2a 1.42 1.37 1.43 1.43 1.37 1.43	2b 1.42 1.37 1.43 1.42 1.37 1.43	2c 1.42 1.37 1.42 1.42 1.37 1.42	Bond lengths (Å) S1 8 9 10 11 12 13	2a 1.42 1.41 1.42 - -	2b 1.39 1.40 1.40 1.42 1.42 -	2c 1.39 1.40 1.39 1.40 1.40 1.40

	I PELE	II PELE	I PBE-D	II PBE-D	I D	II D
	(OPLS)	(OPLS)				
NIAD-4	-337	-253	-339	-242	-255	-175
DANIR-2a	-179	-121	-195	-132	-195	-111
DANIR-2c	-251	-222	-265	-283	-232	-220

Table S2. PBE-D2 interaction energies and Grimme dispersion contribution (kJ/mol) of NIAD-4, DANIR-2a and DANIR-2c for selected marker-amyloid fibril complex models.

Figure S1. Computed TD-DFT(CAM-B3LYP) spectra from *ab initio* molecular dynamics simulations (PBE-D) of DANIR-2a in water and dichloromethane. Simulation time: 20 ps (80 evenly distributed snapshots) – red bars; 10 ps (40 evenly distributed snapshots) – blue bars.

DANIR-2a I

DANIR-2a II

Figure S2. Selected models of fibril-marker interactions.

Figure S3. Optimized S_1 geometries of DANIR-2a, -2b and -2c.

Figure S4 a) Relaxed and b) rigid potential energy scans around the double bonds of DANIR-2a, 2b and 2c.