Electronic Supporting Information

Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: Tuning properties for efficient CO oxidation

Mouni Roy, Somjyoti Basak, and Milan Kanti Naskar*

Sol-Gel Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700 032,

India

Figure S1: Schematic diagram of the experimental set-up for oxidative conversion of carbon monoxide.

Figure S2: DTA-TG of Mn oxide samples before thermal treatment: (A) S-2@20, (B) S-2@80, (C) S-2@40, (D) S-10@40 and (E) S-20@40.

Figure S3: (A) XRD and (B) Raman spectra of Mn oxide prepared without benzaldehyde (S-2@0).

Figure S4: FESEM image of Mn oxide prepared without benzaldehyde (S-2@0).

Sample ID	Phase identified by XRD and Raman spectroscopy	ΔEs	Average oxidation state (AOS) ^a of Mn in oxides samples
S-2@20	Mn ₅ O ₈	5.20	3.1
S-2@80	$Mn_5O_8 + MnO_2$	5.30	3.0
S-2@40	Mn ₅ O ₈	5.23	3.1
S-10@40	$Mn_5O_8 + MnO_2$	5.38	2.9
S-20@40	MnO ₂	4.70	3.7

Table S1: The phase identified by XRD and Raman spectroscopy, and AOS determined byXPS analysis of different Mn oxides.

^a AOS = 8.956 - 1.126 Δ E_s, where Δ E_s = binding energy obtained from doublet separation of Mn3s

Table S2: The textural property of prepared Mn oxide samples

Sample ID	$S_{BET} (m^2 g^{-1})$	V _{p-Total} (cm ³ g ⁻¹)	D ^a (nm)
S-2@20	65	0.55	34.2
S-2@80	28	0.10	15.5
S-2@40	48	0.24	19.8
S-10@40	32	0.13	16.6
S-20@40	61	0.22	14.2

^a Average pore diameter

Catalyst ID	Temperature for CO conversion			
	T _{10%}	T _{50%}	T _{90%}	T _{100%}
S-2@20	117	183	227	232
S-2@80	152	220	287	298
S-2@40	211	265	332	350
S-10@40	157	221	279	284
S-20@40	168	237	320	340

Table S3: The temperatures corresponding to CO oxidations with the prepared Mn oxide catalysts

Type of oxide	Conditions	T₂ ⁰C	E _a (kJ/mol)	Ref. no.
Mn ₂ O ₃	1% CO, 18% O ₂ ; GHSV=10,000 h ⁻¹	$T_{50} = 423$	46.05	1
α-MnO ₂	1% CO, 16% O ₂ ; D _{total} =100 mlmin ⁻¹ ; m=150 mg	$T_{90} = 399$	_	2
δ-MnO ₂	5% CO, 21% O ₂ ; D _{total} =21 mL min ⁻¹ ; m = 1 g	$T_{45} = 353$	20.93	3
3DOM Mn ₂ O ₃	1% CO, 20% O ₂ ; GHSV=20,000 h ⁻¹ ; m=500 mg	$T_{90} = 180$	80	4
α-Mn ₂ O ₃	1% CO, 20% O ₂ ; D _{total} = 50 mL min ⁻¹ ; m = 50 mg	$T_{50} = 407$	37	5
MnO _x	2% CO, 2% O_2 ; $D_{total} = 50 \text{ mlmin}^{-1}$; m=20 mg	$T_{90} = 410$	17	6
Non- stoichiometric Mix phase (Mn ₅ O ₈ +MnO ₂)	1% CO, 20% O ₂ ; $D_{total} = 40 \text{ mlmin}^{-1}$; m=50 mg	$T_{90} = 279$	17	Present work

Table S4: Data of research papers regarding activation energy required for CO oxidation

 over Mn oxide catalysts

References:

- 1. S. Imamura, H. Sawada, K. Uemura and S. Ishida, J. Catal., 1988, 109, 198-205.
- 2. R. Xu, X. Wang, D. Wang, K. Zhou and Y. Li, J. Catal., 2006, 237, 426-430.
- 3. S. B. Kanungo, J. Catal., 1979, 58, 419-435.
- 4. S. Xie, H. Dai, J. Deng, H. Yang, W. Han, H. Arandiyan and G. Guo, *J. Hazard. Mater.*, 2014, **279**, 392-401.
- L.-C. Wang, X.-S. Huang, Q. Liu, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan and J.-H. Zhuang, J. Catal., 2008, 259, 66-74.
- 6. V. Iablokov, K. Frey, O. Geszti and N. Kruse, *Catal. Lett.*, 2010, **134**, 210-216.