High Performance Lithium Storage in Ultrafine Manganese Fluoride Nanorod Anode with Enhanced Electrochemical Activation Process

Based on Conversion Reaction†

Kun Rui, a Zhaoyin Wen, a Xiao Huang, a Yan Lu, a Jun Jin a and Chen Shena

^aCAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese

Academy of Sciences, Shanghai 200050, China.

Email: zywen@mail.sic.ac.cn

Fig. S1 The crystal structure of tetragonal MnF₂ (P42/mnm) classed to Rutile group.

Fig. S2 XRD patterns of the samples that were prepared for 24h at different solvothermal temperatures.

Fig. S3 Schematic illustration of a projected view of [Bmim]⁺ ions anchored onto (110) plane to form tight coverage layer via the original cell.

Fig. S4 Schematic illustration of MnF₆ octahedron in different projection directions (a)

[100], (b) [001], (c) [110]

The atom F density of different planes can be calculated as follows.

(a) (100)

$$\frac{0}{a * c}$$

(b) (001)
$$\frac{2}{a * a} = \frac{2}{4.8736 * 4.8736} = \frac{2}{23.75}$$

(c) (110)
$$\frac{2}{\sqrt{2} * a * c} = \frac{2}{1.414 * 4.8736 * 3.3020} = \frac{2}{22.75}$$

Electrodes	R _e / Ω	R _{SEI} / Ω	R_{ct}/Ω
50 th -150	2.83	-	52.3
OCV-100	2.88	-	46.6
1 st -100	3.39	11.4	27.5
50 th -100	2.77	9.07	23.5
100 th -100	2.99	7.48	20.3

Table S1. Impedance parameters of as-prepared nanorod $\rm MnF_2$ anode at specified cycles together with the control sample obtained at 150 $^{\rm Q}\rm C$

Fig. S5 The simplified equivalent circuit used for impedance fitting.

Table S2. Comparison of the electrochemical performance of MnF₂ nanorod anode in this work with those of metal fluorides of similar morphology reported in the literatures

literatures						
Samples	Theoretical	Current	Initial	Capacity after	REF	
	capacity /	density	capacity /	cycling / mAh g ⁻¹		
	mAh g⁻¹		mAh g⁻¹			
FeF ₂ @C 571 for FeF ₂		30 mA g ⁻¹	314	217 (50 cycles) S1		
nanorods		100 mA g ⁻¹	ca.200	-		
		200 mA g ⁻¹	ca.160	-		
		500 mA g ⁻¹	ca.100	-		
Carbon-	571 for FeF_2	50 mA g ⁻¹	352	263 (50 cycles)	S2	
Nanotube-		100 mA g ⁻¹	-	181 (50 cycles)		
Encapsula		500 mA g ⁻¹	-	124 (50 cycles)		
ted FeF ₂		1 A g ⁻¹	-	92 (50 cycles)		
nanorods						
FeF ₃	712 for FeF_3	50 mA g ⁻¹	543	223 (50 cycles)	S3	
nanowires		200 mA g ⁻¹	ca.470	157 (50 cycles)		
MnF ₂	577	0.1 C	450	560 (50 cycles)	This	
nanorod			(reversible)		work	
		1 C (577 mA	415	540 (100 cycles)		
		g-1)				
		2 C	380	410 (100 cycles)		
		5 C	300	273 (100 cycles)]	
		10 C	215	430 (2000		
				cycles)		

- 1. Y. L. Zhang, L. Wang, J. J. Li, L. Wen and X. M. He, *Journal of Alloys and Compounds*, 2014, **606**, 226-230.
- 2. J. Zhou, D. Zhang, X. Zhang, H. Song and X. Chen, *ACS Appl. Mater. Interfaces*, 2014, **6**, 21223-21229.
- 3. L. Li, F. Meng and S. Jin, *Nano Lett.*, 2012, **12**, 6030-6037.