Electronic Supplementary Information

The degree of π electron delocalization and the formation of 3D-extensible sandwich structure

Xiang Wang,^a Qiang Wang,^b Caixia Yuan,^a Xue-Feng Zhao,^a Jia-Jia Li,^a Debao Li,^b Yan-Bo Wu^{a,*}, and Xiaotai Wang^c

- b. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, The Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, People's Republic of China.
- c. Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, Colorado 80217-3364, United States.

Table of content:

- 1. Table S1. Comparison between ω B97X-D/6-31G(d) and B3LYP/6-31G(d) results.
- 2. Figure S1. Full set of AdNDP orbitals of planarized biphenyl.
- 3. Figure S2. Full set of AdNDP orbitals of sandwich complex with two biphenyl ligands.
- 4. Figure S3. Full set of AdNDP orbitals of starbenzene dimer.
- 5. Figure S4. Full set of AdNDP orbitals of sandwich complex with mixed starbenzene dimer-benzene ligands.

Table S1. Comparison between ω B97X-D/6-31G(d) and B3LYP/6-31G(d) results, including the point groups (PG), the lowest vibrational frequencies (ν_{min} , in cm⁻¹), the HOMO-LUMO gap (Gap, in eV), the total binding energies (BE_{total}) relative to the free starbenzenes, benzenes, and chromium atoms, the binding energies for extending a decker in sandwich chains (BE_{1D-ext}, in kcal/mol), and the average binding energies for the formation of a hydrogen bridge bond (BE_{HBB}).

		B3LYP/6-31G(d)					ωB97X-D/6-31G(d)					
	PG	v_{\min}	Gap	BE_{total}	BE _{1D-ext}		PG	v_{\min}	Gap	BE_{total}	BE_{1D-ext}	
(Bz)2Cr	D _{6h}	39	4.06	-79.3		(Bz)2Cr	D _{6h}	57	8.11	-101.7		
1	D _{6d}	37	3.24	-84.1		1	D _{6d}	41 <i>i</i>	7.28	-118.6		
2'	<i>C</i> ₆ <i>v</i>	16	3.75	-97.9		2	C_{6v}	37	7.94	-127.1		
3″	D_6	8	3.59	-172.0	-74.1	3″	D_6	23	7.44	-228.9	-101.8	
4"	<i>C</i> ₆	5	3.12	-238.2	-66.3	4"	<i>C</i> ₆	29	6.67	-318.5	-89.6	
5	D _{6h}	8	2.74	-298.1	-59.9	5	D _{6h}	7	6.23	-399.5	-81.0	
	PG	v_{\min}	Gap	BE_{total}	BE _{HBB}		PG	v_{\min}	Gap	BE_{total}	BE_{HBB}	
2PP2	$C_{2\nu}$	11	3.68	-224.8	-29.0	2PP2	C_{2v}	3	7.85	-287.8	-33.7	
2PP3	<i>C</i> _{3v}	16	3.64	-380.9	-29.1	2PP3	C_{3v}	18	7.80	-482.1	-33.6	
2EE2	$C_{2\nu}$	16	3.62	-243.9	-24.0	2EE2	C_{2v}	23	7.75	-309.9	-27.9	
2PE4	$C_{2\nu}$	10	3.57	-543.8	-25.3	2PE4	C_{2v}	9	7.72	-686.2	-29.7	
3PP2	D _{2h}	4	3.56	-405.7	-30.9	3PP2	D_{2h}	15	7.30	-528.2	-35.3	
3PP3	D _{3h}	16	3.53	-700.5	-30.8	3PP3	D_{3h}	20	7.25	-898.3	-35.3	
3EE2	D _{2h}	21	3.51	-446.5	-25.6	3EE2	D_{2h}	24	7.22	-576.6	-29.7	

Figure S1. Full set of AdNDP orbitals of planarized biphenyl.

Twenty 2c-2e C-H σ bonds, ON = 1.98 |e|

Twenty six 2c-2e C-C σ bonds, ON = 1.97-1.98 |e|

Two 1c-2e Cr lone pair ON = 1.94 |e|

Figure S2. Full set of AdNDP orbitals of sandwich complex with two biphenyl ligands.

Four 7c-2e delocalized δ bonds, ON = 1.55-1.56 |e|

Eight 2c-2e C-H σ bonds, ON = 1.99 |e|

Eight 2c-2e C-C σ bonds, ON = 1.98 |e|

Two 3c-2e σ bonds, ON = 1.98 |e|

Six 4c-2e π bonds, ON = 1.97 |e|

Figure S3. Full set of AdNDP orbitals of starbenzene dimer.

Figure S4. Full set of AdNDP orbitals of sandwich complex with mixed starbenzene dimer-benzene ligands.