Supporting Information

Excited-State Localization and Energy Transfer in Pyrene Core Dendrimers with Fluorene/ Carbazole as Dendrons, and Acetylene as Linkages

Linyin Yan*, Yan Wan, Andong Xia

The State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese

Academy of Sciences, Beijing 100190, P. R. China

ShengHien Lin*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, China

Ran Huang

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Figure S1 Optimized Molecular Structures of T1

Figure S2 Optimized Molecular Structures of T2

Figure S3 Optimized Molecular Structures of T3

Figure S4 Optimized Molecular Structures of T4

Figure S5 Optimized Molecular Structures of the Chromophore B

Figure S6 Optimized Molecular Structures of the Chromophore C

Figure S7 Optimized Molecular Structures of the Molecule Model 1 (M1)

Figure S8 Optimized Molecular Structures of the Molecule Model 2 (M2)

Figure S9. Normalized absorption and fluorescence spectra of dendrimers obtained by experimental detection in toluene $(1.0 \times 10^{-5} \text{ M})$ (a) and theoretical calculation (b)⁸. To better describe the spectra, Lorentzian line shapes with different FWHMs have been used of absorption and emission bands. For the absorption band, FWHM = 1000 cm⁻¹, and for the emission one FWHM = 500 cm⁻¹.

Figure S10. Fluorescence excitation anisotropy spectra and absorption spectra of T1-T4, obtained by experimental detection $(a)^8$, and theoretical calculation (b).

Figure S11. Fluorescence excitation anisotropy spectra and absorption spectra of T1 and M1 M2, obtained by theoretical calculation.

Figure S12. Simulated two-photon absorption (2PA, solid lines) and one-photon absorption (1PA, dash lines) spectra of T1 and M1 M2.

Table S1. Calculated Excited States Charge Difference density (CDD) of T1 and T2.^a

^{*a*} The negative density (blue) represents the hole, and the positive density (red) represent the electron. Calculated excitation energy and oscillator strength (f) are listed in the table. The

detected absorption maximums are also listed in the corresponding table in bold type. The density data shown in this table were obtained by using ZINDO method.

Table S2. Calculated Excited States Charge Difference density (CDD) of T3 and T4.^a

3.08 eV 402 nm f=0.0009

3.17 eV 392 nm f=6.1214 **377nm**

3.10 eV 400 nm f=7.3510 **383nm**

^{*a*} The negative density (blue) represents the hole, and the positive density (red) represent the electron. Calculated excitation energy and oscillator strength (f) are listed in the table. The detected absorption maximums are also listed in the corresponding table in bold type. The density data shown in this table were obtained by using ZINDO method.

Model for the Core Structure		
Mode	Frequencies (cm ⁻¹)	Huang-Rhys Factors
1	55.287	1.84E-06
2	149.38	2.31E-06
3	215.35	3.30E-05
4	223.86	0.20403
5	275.42	6.86E-07
6	291.44	5.23E-14
7	375.63	2.73E-07
8	388.4	0.5417
9	414.46	0.06128
10	451.82	1.34E-07
11	529.54	2.82E-05
12	535.61	8.61E-07
13	608.26	0.01973
14	624.73	1.67E-06
15	673.99	8.00E-08
16	741.91	0.00127
17	794.04	9.56E-06
18	816.86	3.26E-07
19	832.83	0.10919
20	854.47	3.31E-07
21	897.16	4.54E-09

 Table S3. Calculated Vibrational Frequencies and Huang-Rhys Factors of the Chromophore B.

The Molecular

22	975.15	0.0107		
23	1013.2	0.02424		
24	1114.2	0.00332		
25	1135.4	0.03306		
26	1193.1	0.00431		
27	1232.2	0.03193		
28	1263.2	0.34098		
29	1301.4	0.00828		
30	1324.5	0.04327		
31	1394	0.10336		
32	1434.7	2.41E-04		
33	1465.4	0.03087		
34	1483.1	0.08676		
35	1516.6	2.60E-04		
36	1566.7	0.62783		
37	1600.9	0.04843		
38	3176	0.05363		
39	3183.6	0.00835		
40	3187.5	0.00651		
41	3204	0.00195		
42	3214.2	0.01208		
43	3253.3	4.59E-04		
44	3277.2	0.15988		
45	3854.5	0.0714		

Table S4. Calculated Vibrational Frequencies and Huang-Rhys Factors of the Chromophore C.

The Molecular Model for the Core Structure		
Mode	Frequencies (cm ⁻¹)	Huang-Rhys Factors
1	8.5587	1.69E-05
2	9.3155	2.18E-06
3	9.6844	1.48E-08
4	9.8053	8.02E-07
5	9.9318	2.37E-06
6	16.194	0.40362
7	16.838	7.56E-08
8	17.304	4.11E-08
9	19.852	3.35E-08
10	34.279	2.42E-08
11	37.921	4.38E-08
12	45.036	5.11E-08
13	76.136	3.26E-08
14	80.746	1.63E-09
15	102.2	6.52E-09
16	103.89	4.91E-08

17	107.38	0.00522
18	115.98	1.93E-09
19	122.51	1.23E-07
20	127.57	9.68E-10
21	137.62	6.28E-08
22	174.3	3.72E-04
23	197.76	7.32E-08
24	216.67	5.66E-10
25	222.17	1.53E-08
26	228.5	2.10E-08
27	232.28	1.28E-10
28	248.32	2.73E-07
29	270.75	3.05E-11
30	306.24	5.56E-10
31	309.55	1.14E-09
32	311.96	1.23E-10
33	316.26	1.11E-08
34	376.39	5.06E-08
35	390.11	0.33976
36	414.2	2.08E-10
37	419.3	6.36E-09
38	419.3	3.32E-09
39	419.31	1.91E-10
40	419.31	9.64E-12
41	421.93	2.21E-08

42	442.41	8.57E-09
43	445.81	2.58E-09
44	452.81	4.58E-09
45	462.81	0.02349
46	482.75	1.08E-08
47	487.39	1.02E-08
48	509.43	3.69E-08
49	521.97	4.63E-09
50	529.04	1.32E-07
51	530.43	2.60E-10
52	533.29	5.79E-08
53	547.09	9.46E-04
54	551.57	1.32E-09
55	551.75	2.66E-07
56	561.66	1.34E-08
57	564.2	6.64E-12
58	566.05	4.90E-08
59	569.86	8.73E-04
60	587.24	1.16E-08
61	603.75	1.15E-09
62	612.65	5.39E-12
63	641.57	6.75E-08
64	642.96	4.03E-08
65	643.33	2.13E-05
66	643.4	1.87E-08

67	655.72	8.86E-10
68	671.4	1.37E-09
69	674.04	5.30E-09
70	675.21	9.60E-09
71	675.34	3.92E-04
72	713.02	1.13E-10
73	716.85	2.15E-08
74	716.93	4.04E-08
75	716.96	2.08E-09
76	717.05	2.90E-08
77	727.53	4.44E-10
78	737.25	1.08E-07
79	745.98	1.39E-08
80	749.34	1.89E-08
81	789.11	1.47E-08
82	789.19	3.27E-08
83	789.24	2.38E-08
84	789.37	2.00E-09
85	798.28	1.19E-09
86	806.24	0.00468
87	828.63	7.47E-10
88	840.15	1.48E-10
89	860.48	1.85E-09
90	869.82	8.33E-10
91	873.91	7.29E-10

92	874.14	1.13E-07
93	874.21	9.37E-10
94	874.45	5.34E-08
95	875.76	1.46E-08
96	915.41	4.79E-08
97	940.33	7.26E-11
98	940.43	2.79E-10
99	952.19	1.35E-09
100	952.27	3.09E-08
101	952.29	1.14E-09
102	952.41	8.68E-10
103	999.34	5.64E-09
104	999.36	3.45E-09
105	999.38	7.69E-10
106	999.39	9.53E-10
107	1021.3	2.75E-09
108	1023.3	6.29E-12
109	1025.5	3.12E-08
110	1025.5	7.84E-09
111	1025.5	5.13E-09
112	1025.6	1.77E-12
113	1027.5	0.00894
114	1029.2	1.16E-08
115	1029.3	8.50E-07
116	1029.3	1.97E-09

117	1029.5	9.03E-04
118	1033.4	1.17E-09
119	1068.5	4.84E-08
120	1069.6	2.27E-07
121	1071.2	1.53E-04
122	1072.8	6.66E-11
123	1110.3	1.50E-07
124	1120.3	2.73E-07
125	1120.3	4.44E-08
126	1120.4	7.40E-04
127	1120.4	9.61E-08
128	1169.6	1.40E-10
129	1185.5	6.01E-08
130	1193.1	0.00123
131	1193.1	5.55E-07
132	1193.1	8.20E-08
133	1193.1	2.97E-08
134	1195.7	2.33E-08
135	1202.1	0.01387
136	1213.7	0.00438
137	1213.9	3.47E-08
138	1214.2	4.67E-08
139	1214.8	2.25E-08
140	1235.3	0.07892
141	1237.9	4.18E-09

142	1240.2	1.29E-09
143	1254.4	7.50E-08
144	1310	1.09E-07
145	1321.8	8.09E-09
146	1330.2	0.13977
147	1331.1	6.40E-08
148	1331.2	0.0015
149	1331.2	1.78E-06
150	1331.2	4.25E-08
151	1335.7	2.18E-10
152	1367.1	7.21E-06
153	1367.1	6.59E-07
154	1367.1	1.34E-07
155	1367.2	0.00294
156	1378	4.23E-08
157	1404.3	2.35E-09
158	1424.8	0.22094
159	1441.9	3.37E-08
160	1449.8	0.00991
161	1456.7	3.74E-09
162	1457.2	1.47E-09
163	1504.8	0.00172
164	1504.8	1.33E-06
165	1504.8	1.23E-06
166	1504.8	9.68E-08

167	1533	2.64E-08
168	1554.7	2.45E-07
169	1555.7	2.16E-07
170	1562.2	5.50E-04
171	1563.1	3.06E-07
172	1574.6	0.04473
173	1584.2	4.97E-08
174	1586.8	2.04E-12
175	1627	6.04E-09
176	1664.7	1.42E-08
177	1664.7	1.40E-09
178	1664.8	3.26E-05
179	1664.8	7.26E-07
180	1673.9	3.80E-10
181	1693.9	1.16E-06
182	1697.4	0.02058
183	1697.5	1.75E-08
184	1698.2	3.97E-10
185	1703.1	1.19E-06
186	1714	0.27436
187	2366	1.17E-08
188	2366.2	8.50E-09
189	2367.5	0.01035
190	2368.8	8.10E-09
191	3209.1	7.51E-07

192	3209.1	4.06E-07	
193	3209.1	2.10E-07	
194	3209.2	8.75E-05	
195	3217.8	1.57E-04	
196	3217.8	8.62E-05	
197	3217.8	8.22E-06	
198	3217.8	5.31E-08	
199	3227.6	1.39E-04	
200	3227.6	1.19E-07	
201	3227.6	3.12E-08	
202	3227.6	1.03E-11	
203	3230.8	3.04E-10	
204	3230.9	2.93E-10	
205	3235	3.33E-05	
206	3235	1.42E-06	
207	3235	6.81E-07	
208	3235	8.11E-10	
209	3239.8	0.00118	
210	3239.8	1.20E-06	
211	3239.8	1.68E-07	
212	3239.8	3.17E-08	
213	3244.9	4.11E-10	
214	3245	1.71E-06	
215	3246.6	7.83E-09	
216	3246.7	1.42E-04	

Method	Oscillator Strength	Coefficie nt	Hole	Density	CDD
TD-CAM- B3LYP	f=2.3520	0.66373	номо	LUMO	
		0.19712	HOMO-1	LUMO+1	
70000	6-1-7529	0.61720	НОМО	LUMO	**************************************
ZINDO	I=1.7538	-0.24271	HOMO-1	LUMO+1	

Table S5. Molecular Orbitals Involved in $S_0 \rightarrow S_1$ Transition of **Chromophore B**.

Method	Oscillator Strength	Coefficie nt	Hole	Density	CDD
TD-CAM- B3LYP	f=1.3716	0.68963	HOMO	LUMO	
ZINDO	f=1.3357	0.66492	HOMO	LUMO	

Table S6. Molecular Orbitals Involved in $S_0 \rightarrow S_1$ Transition of **Chromophore C**.

Table S7. Calculated Excited States Charge Difference density (CDD) of T1.^a

^{*a*} The negative density (blue) represents the hole, and the positive density (red) represent the electron. Calculated excitation energy and oscillator strength (f) are listed in the table. The detected absorption maximums are also listed in the corresponding table in bold type. The density data shown in this table were obtained by using ZINDO method.