Supplementary Information

Aromatic character of planar boron-based clusters revisited by ring current calculations

Hung Tan Pham,^{a,b} Kie Zen Lim^c, Remco W. A. Havenith^c and Minh Tho Nguyen^{d,*}

^a Computational Chemistry Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

^b Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

^c Theoretical Chemistry, Zernike Institute for Advanced Materials and Stratingh Institute for Chemistry, University of Groningen, NL-9747 AG Groningen, The Netherlands Netherlands and Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000 Gent, Belgium

^d Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.

The file contains:

- **Scheme 1**. Geometries of the most stable B_6 and B_6^{2-} clusters
- Scheme 2. Shape of the delocalized π and σ MOs of B₆.
- Scheme 3. Optimized geometries of the lowest-lying structures of B_8 , B_8^{2-} and B_9^{-} .
- Scheme 4. Optimized structures of the anions B_{10}^{2-} and B_{11}^{-} .
- **Scheme 5.** The optimized structure of B_{12} and B_{13}^+ .
- Scheme 6. Optimized structure of the elongated dianions B_{14}^{2-} and B_{16}^{2-} .

Scheme 7. Optimized structures of B₆H₅⁺ and Li₇B₅H₅⁺

^{*} Email: <u>minh.nguyen@chem.kuleuven.be</u>

Figure S1. The possible transitions of B_3^+ cluster.

Figure S2. The total, π and σ ring current maps of B₇⁻, B₈^{0/2-} and B₉⁻ clusters. The ring current density was calculated using B3LYP/6-311G* method.

Figure S3. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B7boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S4. Schematic orbital-energy level for the symmetry allowed virtual excitations in the $B10^{2-}$ boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S5. The MOs have main contributon to π and σ ring current of B₁₂.

Figure S6. Schematic orbital-energy level for the symmetry allowed virtual excitations in the $B16^{2-}$ boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S7. The ring current maps of MOs which has main contribution to π and σ ring current density of B₁₉⁻ and B₁₈²⁻.

Figure S8. The ring current maps of MOs which has main contribution to π and σ ring current density of a) Li₇B₅H₅⁺ and b) B@B₅H₅⁺

Figure S9. The ring current maps of M@B6H6q with M=Co, Fe and Mn; q=+1,0, -1.

Figure S10. The current density of MOs of Fe@B₆H₆

Figure S11. The ring current maps of σ MOs (a) π -MOs (b) for Fe@B₇H₇

Figure S12. The ring current maps of B_nC_m cluster which isolectronic with B_{10}^{2-}

Scheme 1. Geometries of the most stable B_6 and B_6^{2-} clusters

Scheme 2. Shape of the delocalized π and σ MOs of B₆.

Scheme 3. Optimized geometries of the lowest-lying structures of B_8 , B_8^{2-} and B_9^{-} .

Scheme 4. Optimized structures of the anions B_{10}^{2-} and B_{11}^{-} .

Scheme 5. The optimized structure of B_{12} and B_{13}^+ .

Scheme 6. Optimized structure of the elongated dianions B_{14}^{2-} and B_{16}^{2-} .

Scheme 7. Optimized structures of $B_6H_5^+$ and $Li_7B_5H_5^+$

Figure S1. The possible transitions of B_3^+ cluster.

Figure S2. The total, π and σ ring current maps of B_7^- , $B_8^{0/2-}$ and B_9^- clusters. The ring current density was calculated using B3LYP/6-311G* method.

Figure S3. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B7- boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S4. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B_{10²} boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S5. The MOs have main contributon to π and σ ring current of B₁₂.

Figure S6. Schematic orbital-energy level for the symmetry allowed virtual excitations in the B_{16²} boron cluster. Rotationally (translationally) allowed excitation is shown as hollow (solid) arrow.

Figure S7. The ring current maps of MOs which has main contribution to π and σ ring current density of B_{19}^{-} and B_{18}^{2-} .

Figure S8. The ring current maps of MOs which has main contribution to π and σ ring current density of a) $Li_7B_5H_5^+$ and b) $B@B_5H_5^+$

Figure S9. The ring current maps of M@B6H6q with M=Co, Fe and Mn; q=+1,0, -1.

Figure S10. The current density of MOs of $Fe@B_6H_6$

Figure S11. The ring current maps of σ MOs (a) π -MOs (b) for Fe@B₇H₇

 $(\sigma + \pi)$ electrons

π-electrons

σ-electrons

Figure S12. The ring current maps of B_nC_m cluster which isolectronic with B_{10}^{2-}