Supplementary Section

for

Mechanism of excited state proton dissociation in microhydrated hydroxylamine clusters

Jittima Thisuwan, Parichart Suwannakham, Charoensak Lao-ngam and Kritsana Sagarik^{*}

School of Chemistry, Institute of Science Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

- Table S1 Equilibrium structures of the intermediate complexes for proton dissociation and transfer in NH₂OH(H₂O)_n(n = 1-4) in the S₀ and S₁ states. The S₀ state structures were obtained from DFT/B3LYP/aug-cc-pVDZ geometry optimizations and those in the S₁ state were representative dynamic equilibrium structures sampled from NVT-BOMD simulations at the TD-DFT/B3LYP/aug-cc-pVDZ level. The total energies (E^{Tot}) and H-bond distances (R₀₋₀, R_{N-0} and Δd_{DA}) are in au and Å, respectively. The excitation energies (E^{Ex,[A]} and E^{Ex,[B]}) and vibrational frequencies are in eV and cm⁻¹, respectively.
- Table S2Selected Z-matrices of the static and dynamic equilibrium structures of the intermediate
complexes in the S0 and S1 states obtained from DFT/B3LYP/aug-cc-pVDZ geometry
optimizations and sampled from NVT-BOMD simulations at the TD-DFT/B3LYP/aug-
cc-pVDZ level, respectively.
- Table S3Drifts in the energies, temperature and velocity of proton in structure E1-[1] in the S1 state
obtained from NVT-BOMD simulations at 250 K. Energies and velocity are in atomic
unit (au) and temperature is in K.
- Table S4Drifts in the energies, temperature and velocity of proton in structure E1-[1] in the S1 state
obtained from NVT-BOMD simulations at 350 K. Energies and velocity are in atomic
unit (au) and temperature is in K.
- Table S5Averages of properties (<A>) and the corresponding standard deviations (σ_A) obtained
from NVT-BOMD simulations on structure E1-[1] in the S1 state at 298 K. P1 and P2
are for the large- and small-amplitude O-O vibrations, respectively.
- Table S6Averages of properties (<A>) and the corresponding standard deviations (σ_A) obtained
from NVT-BOMD simulations on structure E1-[1] in the S1 state at 500 K. P1 and P2
are for the large- and small-amplitude O-O vibrations, respectively.
- **Table S7**Average lowest singlet-excitation ($\langle E^{Ex} \rangle$) and kinetic ($\langle E^{Kin} \rangle$) energies and the
corresponding standard deviations (σ_E^{Ex} and σ_E^{Kin} , respectively) of structure E1-[1]
obtained from NVT-BOMD simulations over the temperature range of 250-500 K.
- **Table S8**Kinetics of proton dissociation in the smallest intermediate complex (structure E1-[1]) in
the S1 state obtained from NVT-BOMD simulations over the temperature range of 250-
400 K. Lifetimes (τ) and first order-rate constants (k) are in fs and ps⁻¹, respectively.
- Table S9Kinetics of proton dissociation in the smallest intermediate complex (structure E1-[1]) in
the S1 state obtained from BOMD simulations over the temperature range of 250-500 K.P1 and P2 are the dynamics for the large- and small-amplitude O-O vibrations,
respectively. Lifetimes (τ) and first order-rate constants (k) are in fs and ps⁻¹,
respectively.
- **Figure S1** Spatial distributions of the HOMO and LUMO wavefunctions of the isolated NH₂OH and the intermediate complexes in Fig. 1. The values of the HOMO and LUMO isosurfaces are 0.10 and 0.04, respectively. a) Isolated NH₂OH in $\varepsilon = 1$ and $\varepsilon = 78$. b) c) The intermediate complexes in $\varepsilon = 1$ and 78, respectively.

- Figure S2 Energy profile of the potential energy surface for proton displacement in structure E1-[1] in the S₁ states ($\epsilon = 1$) computed with and without non-adiabatic effects. $\Delta d_{DA} =$ asymmetric stretching coordinate (Å); R₀₋₀ = H-bond distance (Å); [B]^{*} = minimum on the S₁ state surface.
- Figure S3 Variations of temperature (T), potential energy (E^{Pot}), vertical excitation energy (E^{Ex}), and the H-bond distances (R₀₋₀ and R_{0-H}) as a function of the simulation time, obtained from NVT-BOMD simulations on structure E1-[1] at 298 and 500 K. P1 and P2 are examples of the large- (L) and small-(S) amplitude O-O vibrations, respectively. Distances and energies are in Å and atomic unit (au), respectively. a) 298 K (400-700 fs), b) 500 K (250-1200 fs).