Supplementary information of the paper

Aminophenol isomers unraveled by conformer-specific far-IR action spectroscopy

Vasyl Yatsyna ${ }^{\text {a,b }}$, Daniël J. Bakker ${ }^{\text {b }}$, Raimund Feifel ${ }^{\text {a }}$, Anouk M. Rijs** , and Vitali Zhaunerchyk*a
${ }^{\text {a }}$ University of Gothenburg, Department of Physics, 41296 Gotheburg, Sweden. Tel:+46317869150; E-mail: vitali.zhaunerchyk@physics.gu.se
${ }^{\mathrm{b}}$ Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands. Tel:
+31243653940; E-mail: a.rijs@science.ru.nl

Table of contents:

Table S1. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of 4 -aminophenol in the range of 220-800 cm^{-1}. Table S2. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of trans 2-aminophenol in the range of 220-800 cm^{-1}. Table S3. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of trans 3-aminophenol in the range of 220-800 cm^{-1}. Table S4. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of cis 3-aminophenol in the range of 220-800 cm^{-1}. Fig. FS1. Comparison between the accuracy of calculated fundamental transitions in the high wavenumber region ($800-4000 \mathrm{~cm}^{-1}$) with respect to experimental data, achieved by different GGA and hybrid functionals with $6-311+G(d, p)$ basis set.

Table S1. The experimental and calculated wavenumbers of vibrational transitions of 4-aminophenol in the range of $220-800 \mathrm{~cm}^{-1}$. The theoretical results were obtained with B3LYP functional and aug-pc-2 basis set, within harmonic and anharmonic VPT2 [1] approaches. The assignments in bold are given according to Varsaniy's notation [2]. List of abbreviations used: i.p. - in plane, o.p. - out of plane.

		Experiment		B3LYP/aug-pc-2			
Mode	Assignment	$V_{\text {exp }}, \mathrm{cm}^{-1}$	Relative Intensity, \%	harmonic wavenumber, cm^{-1}	anharmonic wavenumber, cm^{-1}	$I_{\text {harm }}$, $\mathrm{km} / \mathrm{mol} * * *$	Potential Energy Distribution
26(1)	C-H o.p. wagging, 10a	792.0	58.8	810.0	796.1	5.9	HCCC torsion (87\%)
27(1)	C-C-C i.p. bending, 12	759.5	100.0	773.0	757.4	16.8	CCC bend i.p. (36\%), OC stretch (16\%), CC stretch (11\%)
	Comb. 33(1)+36(1)*	735.0	21.3	768.8	767.3	1.1	
	NH_{2} wagging overtone 0-3	711.0	37.5				
28(1)	Ring puckering, 4	676.5	56.3	727.3	712.1	5.8	CCCC, CCCN o.p. torsion (67\%)
29(1)	C-C-C i.p. bending, 6b	645.5	6.3	662.2	654.8	0.3	CCC, CCO, CCN bend i.p. (79\%), CC stretch (16\%)
	Comb. 32(1)+30(1)****	532.0	22.5				
30(1)	NH_{2} wagging fundamental ${ }^{* *}$	-	-	616.2	484.8	268.3	HNCC torsion o.p. (73\%), HNH bend (11\%)
31(1)	$\mathrm{C}-\mathrm{C}-\mathrm{C}$ o.p. bending, 16b	502.0	81.3	517.7	506.0	56.7	NCCC, OCCC bend o.p. (82\%)
	OH rock overtone 0-2	478.0	42.5				
32(1)	$\mathrm{C}-\mathrm{C}-\mathrm{C}$ i.p. bending, 6a	472.0	12.5	474.4	469.4	0.3	CCC bend i.p. (70\%), CC stretch (16\%)
	NH_{2} wagging overtone 0-2	467.0	42.5				
	NH_{2} torsion overtone 0-2	462.0	53.8				
33(1)	C-O, C-N i.p. bending, 9b	370.0	30.0	439.3	437.9	6.5	CCO, CCN bend i.p. (91\%)
34(1)	C-C-C o.p. bending, 16a	422.0	45.0	426.5	418.0	1.3	CCCC torsion o.p. (83\%)
35(1)	C-O, C-N o.p. bending, 10b	350.0	23.8	358.2	351.3	7.0	CCCN torsion o.p. (88\%), CCCC torsion o.p. (13\%)
36(1)	$\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N}$ i.p. bending, 15	326.5	18.8	329.5	328.8	3.4	CCO,CCN i.p. bend (82\%)
37(1)	OH wagging	254.5	76.3	294.9	254.3	93.9	HOCC torsion (96\%)
38(1)	NH_{2} torsion	237.0	53.8	245.8	244.6	18.5	HNCC torsion (97\%)
39(1)	C-C-C o.p. bending, 11	-	-	150.2	147.3	2.5	CCCC torsion (77\%)

[^0]** NH_{2} wagging fundamental $30(1)$ is expected to have the value of $30-60 \mathrm{~cm}^{-1}$ according to aniline and halosubstituted anilines studies [3,4]
*** Theoretical intensities of overtone and combination bands were taken when available from anharmonic VPT2 treatment.

Table S2. The experimental and calculated wavenumbers of vibrational transitions of trans 2-aminophenol in the range of 220-800 cm^{-1}. The theoretical results were obtained with B3LYP functional and aug-pc-2 basis set, within harmonic and anharmonic VPT2 [1] approaches. The assignments in bold are given according to Varsaniy's notation [2]. List of abbreviations used: i.p. - in plane, o.p. - out of plane.

		Experiment		B3LYP/aug-pc-2			
Mode	Assignment	$V_{\text {exp }}, \mathrm{cm}^{-1}$	Relative Intensity, \%	harmonic wavenumber, cm^{-1}	anharmonic wavenumber, cm^{-1}	$\begin{aligned} & I_{\text {harm }} \\ & \mathrm{km} / \mathrm{mol}^{* * *} \end{aligned}$	Potential Energy Distribution
26(1)	ring breathing, 1	767	14.3	778.3	768.0	5.7	HOC bend i.p. (20\%), CC stretch (16\%, 16\%), CCC bend i.p. (16\%)
27(1)	C-H o.p. in phase, 11	737.5	100.0	751.0	737.3	44.2	HCCC torsion (55\%), CCCC torsion o.p. (25\%)
28(1)	Ring puckering, 4	748.5	49.3	747.0	730.6	42.0	CCCC torsion o.p. (48\%), HCCC torsion (33\%)
	NH_{2} wagging overtone 0-3*	696	17.1				
	NH_{2} torsion overtone 0-2*	653	15.0	693.7	664.8	1.0	
29(1)	C-C-C i.p. bending, 6a	542	9.3	596.8	590.5	3.9	CCC bend i.p. (51\%)
30(1)	NH_{2} wagging fundamental**	-	-	586.4	526.6	58.3	HNCC torsion, CCN,CCO o.p. bend (66\%)
31(1)	C-C-C o.p. bending, 16a	501.0	15.0	561.3	477.0	129.2	HNCC torsion, CCN,CCO o.p. bend (54\%), CCC bend o.p. (10\%)
32(1)	C-C-C in plane bending, 6b	486	11.8	538.3	491.1	57.7	HNCC torsion (22\%), CCC bend i.p. (19\%)
		453	9.3				
33(1)	C-C-C out of plane bending, 16b	445.5	57.1	457.1	446.2	22.8	CCCC, CCCN, CCCO torsion o.p. (66\%, 18\%)
	NH_{2} wagging overtone 0-2*	437.0	10.0				
34(1)	$\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}$ in plane bending, 9b	351.0	18.6	446.0	441.1	2.7	CCO, CCN bend i.p. (68\%)
35(1)	NH_{2} torsion	323	28.6	346.8	339.3	21.5	HNCC torsion (83\%)
36(1)	C-N, C-O i.p. bending, 15	303	20.0	314.6	317.3	10.9	CCO,CCN, CCC bend i.p. (79\%)
37(1)	OH wagging	286.5	17.9	310.7	291.5	55.8	HOCC torsion (75\%), CCCC torsion o.p. (13\%)
38(1)	C-N, C-O o.p. wagging, 10a	256	32.1	278.1	274.0	48.0	CCCC,CCCO,CCCN torsion o.p. (59\%, 17\%), HOCC torsion (17\%)
39(1)	C-C-C o.p. bending, 10b	-	-	184.2	184.2	1.6	CCCC torsion o.p. (80\%)

* Tentative assignment of the observed experimental bands
** NH_{2} wagging fundamental $30(1)$ is expected to have the value of $30-60 \mathrm{~cm}^{-1}$ according to aniline and halosubstituted anilines studies [3,4]
*** Theoretical intensities of overtone and combination bands were taken when available from anharmonic VPT2 treatment

Table S3. The experimental and calculated wavenumbers of vibrational transitions of trans 3-aminophenol in the range of 220-800 cm^{-1}. The theoretical results were obtained with B3LYP functional and aug-pc-2 basis set, within harmonic and anharmonic VPT2 [1] approaches. The assignments in bold are given according to Varsaniy's notation [2]. List of abbreviations used: i.p. - in plane, o.p. - out of plane.

		Experiment		B3LYP/aug-pc-2			
Mode	Assignment	$v_{\text {exp }}, \mathrm{cm}^{-1}$	Relative Intensity, \%	harmonic wavenumber, cm^{-1}	anharmonic wavenumber, cm^{-1}	$\begin{aligned} & I_{\text {harm }} \\ & \mathrm{km} / \mathrm{mol} * * * \end{aligned}$	Potential Energy Distribution
26(1)	C-H o.p. in phase, 11	755	100.0	768.7	753.8	35.7	HCCO,HCCN,HCCC torsion o.p. (82\%)
27(1)	ring breathing, 1	745	24.3	759.4	748.8	2.9	CC stretch (45\%), CCC bend (22\%,12\%)
	NH_{2} wagging overtone 0-3*	715	24.3				
	Comb. 39(1)+30(1)*	698	20.3				
28(1)	Ring puckering, 4	678	55.4	698.7	685.3	29.2	CCCC torsion o.p. (76\%)
29(1)	C-C-N, C-C-O o.p. bending, 16a	612	10.8	636.2	607.4	18.1	CCCN,CCCO o.p. bend (82\%)
	Comb. 37(1)+36(1)*	602	23.0	640.2	633.7	11.2	
	Comb. 37(1)+38(1)*	542	10.8	543.0	537.4	3.7	
30(1)	C-C-C i.p. bending, 6a	432	9.5	555.0	517.3	44.7	CCC bend i.p. (40\%), HNCC torsion (19\%)
31(1)	C-C-C i.p. bending, 6b	427	29.7	535.4	484.4	66.0	CCC bend i.p. (56\%), HNCC torsion (18\%)
	NH_{2} wagging overtone 0-2*	419	67.6				
32(1)	NH_{2} wagging**	-	-	525.9	426.3	156.8	HNCC torsion (43\%), CCC bend (15\%), NC,OC stretch (10\%)
33(1)	$\mathrm{C}-\mathrm{C}-\mathrm{C}$ out of plane bending, 16b	459	24.3	465.4	463.8	4.1	CCCC torsion o.p. (64\%), CCC,CCN,CCO bend (17\%)
34(1)	$\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}$ in plane bending, 15	449	12.2	462.3	449.8	19.8	CCC,CCN,CCO bend i.p. (68\%), CCCC torsion o.p. (11\%)
	39(2), 10b overtone*	409	5.4				
	37(1)+32(1)****	385	6.8				
35(1)	OH wagging	316	74.3	355.9	328.1	88.9	HOCC torsion (95\%)
36(1)	$\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}$ i.p. bending, 9a	325	14.9	328.1	324.3	2.0	CCN,CCO bend i.p. (49\%), HNCC torsion (31\%)
37(1)	NH_{2} torsion	329	21.6	312.1	312.8	19.8	HNCC torsion (59\%), CCN,CCO bend i.p. (27\%)
	37(1)-32(1)****	274	10.3				
	35(1)-32(1)****	262	14.8				
38(1)	C-C-C o.p. bending, 10a	-	-	230.8	224.7	0.6	CCCC torsion o.p. (80\%)
39(1)	C-C-C o.p. bending, 10b	-	-	217.9	212.9	12.9	CCCC,CCCN,CCCO torsion o.p. (79\%,10\%)

* Tentative assignment of the observed experimental bands
** NH_{2} wagging fundamental 32(1) is expected to have the value of $30-60 \mathrm{~cm}^{-1}$ according to aniline and halosubstituted anilines studies [3,4]. Our estimation for trans
3 -aminophenol is $\sim 55 \mathrm{~cm}^{-1}$ obtained from the tentatively assigned combination bands 262, 274 and $385 \mathrm{~cm}^{-1}$ (sum and difference frequency)
*** Theoretical intensities of overtone and combination bands were taken when available from anharmonic VPT2 treatment

Table S4. The experimental and calculated wavenumbers of vibrational transitions of cis 3-aminophenol in the range of $220-800 \mathrm{~cm}^{-1}$. . The theoretical results were obtained with B3LYP functional and aug-pc-2 basis set, within harmonic and anharmonic VPT2 [1] approaches. The assignments in bold are given according to Varsaniy's notation [2]. List of abbreviations used: i.p. - in plane, o.p. - out of plane.

		Experiment		B3LYP/aug-pc-2			
Mode	Assignment	$v_{\text {exp }}, \mathrm{cm}^{-1}$	Relative Intensity, \%	harmonic wavenumber, cm^{-1}	anharmonic wavenumber, cm^{-1}	$\begin{aligned} & I_{\text {harm }} \\ & \mathrm{km} / \mathrm{mol} * * * \end{aligned}$	Potential Energy Distribution
26(1)	C-H o.p. in phase, 11	766	100.0	776.7	760.5	20.8	HCCN,HCCO,HCCC torsion o.p. (91\%)
27(1)	ring breathing, 1	748	43.1	762.0	750.0	5.3	CCC bend (41\%,17\%), CC stretch (18\%), NC,OC stretch (10\%)
	NH_{2} wagging overtone 0-3*	717	37.9				
	Comb. 38(1)+33(1)*	700	44.8				
28(1)	Ring puckering, 4	679.5	72.4	698.7	685.6	25.1	CCCC torsion o.p. (71\%), HCCN torsion (15\%)
29(1)	$\mathrm{C}-\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{C}-\mathrm{O}$ o.p. bending, 16a	604	17.2	635.8	604.3	17.5	CCCN,CCCO torsion o.p. (86\%)
	Comb. 37(1)+36(1)*	580	31.9				
30(1)	NH_{2} wagging*	-	-	557.4	481.0	112.6	HNCC torsion (40\%), CCC bend (13\%,10\%)
31(1)	C-C-C i.p. bending, 6a	434	32.8	540.4	468.2	98.5	CCC bend i.p. (12\%,13\%), NC,OC stretch (11\%), HNCC torsion (30\%)
32(1)	C-C-C i.p. bending, 6b	430	50.0	529.4	500.2	51.7	CCC bend i.p. (59\%), NC,OC stretch (13\%)
	NH_{2} wagging overtone 0-2*	422	84.5				
33(1)	$\mathrm{C}-\mathrm{N}, \mathrm{C}-\mathrm{O}$ in plane bending, 15	461	27.6	467.2	465.6	13.8	CCC,CCN,CCO bend i.p. (83\%)
34(1)	$\mathrm{C}-\mathrm{C}-\mathrm{C}$ out of plane bending, 16b	446	43.1	460.2	451.1	28.1	CCCC, CCCN, CCCO torsion o.p. (75\%)
	$35(1)+32(1)^{* * *}$	348	17.2				
35(1)	OH wagging	307	124.1	348.3	317.2	90.0	HOCC torsion (95\%)
36(1)	C-N, C-O i.p. bending, 9a	312	20.7	323.9	321.2	4.8	CCN,CCO bend i.p. (66\%), CC stretch (11\%)
37(1)	NH_{2} torsion	318.5	29.3	301.7	299.7	14.0	HNCC torsion 86\%)
	37(1)-32(1) ${ }^{* * * *}$	268	19.0				
	35(1)-32(1)****	256	23.4				
38(1)	C-C-C o.p. bending, 10a	-	-	230.0	223.8	1.3	CCCC torsion o.p. (84\%)
39(1)	C-C-C o.p. bending, 10b	-	-	218.9	214.0	4.5	CCCC, CCCN,CCCO torsion o.p. (83\%)

* Tentative assignment of the observed experimental bands
** NH_{2} wagging fundamental $30(1)$ is expected to have the value of $30-60 \mathrm{~cm}^{-1}$ according to aniline and halosubstituted anilines studies [3,4]. Our estimation for cis $3-$ aminophenol is $\sim 50 \mathrm{~cm}^{-1}$, and was obtained from the tentatively assigned combination bands 256, 268 and $348 \mathrm{~cm}^{-1}$ (sum and difference frequency)
*** Theoretical intensities of overtone and combination bands were taken when available from anharmonic VPT2 treatment

Fig. FS1. Comparison between the accuracy of calculated fundamental transitions in the high wavenumber region (800-4000 cm^{-1}) with respect to experimental data, achieved by different GGA and hybrid functionals with $6-311+G(d, p)$ basis set. The root mean square (RMS) errors were calculated based on 50 unequivocally assigned mid-IR fundamental transitions from literature data for the studied aminophenol isomers.

References:

1. V. Barone, M. Biczysko and J. Bloino, Phys. Chem. Chem. Phys., 2014, 16, 1759-1787.
2. G. Varsanyi, Vibrational Spectra of Benzene Derivatives, edited by G. Varsanyi, Academic Press, 1969.
3. R. A. Kydd and P. J. Krueger, Chem. Phys. Letters, 1977, 49(3), 539.
4. R. A. Kydd and P. J. Krueger, J. Chem. Phys., 1978, 69(2), 827.

[^0]: * Tentative assignment of the observed experimental bands

