Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supplementary information of the paper

Aminophenol isomers unraveled by conformer-specific far-IR action spectroscopy

Vasyl Yatsyna^{a,b}, Daniël J. Bakker^b, Raimund Feifel^a, Anouk M. Rijs^{*b}, and Vitali Zhaunerchyk^{*a}

 ^a University of Gothenburg, Department of Physics, 412 96 Gotheburg, Sweden. Tel:+46317869150; E-mail: <u>vitali.zhaunerchyk@physics.gu.se</u>
^b Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernoovield 7-c, 6525 ED Nijmegen, The Netherlands. Tel: +31243653940; E-mail: <u>a.rijs@science.ru.nl</u>

Table of contents:

Table S1. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of 4-aminophenol in the range of 220-800 cm⁻¹. Table S2. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of *trans* 2-aminophenol in the range of 220-800 cm⁻¹. Table S3. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of *trans* 3-aminophenol in the range of 220-800 cm⁻¹. Table S4. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of *cis* 3-aminophenol in the range of 220-800 cm⁻¹. Table S4. The experimental and calculated (B3LYP/aug-pc2) wavenumbers of vibrational transitions of *cis* 3-aminophenol in the range of 220-800 cm⁻¹. Fig. FS1. Comparison between the accuracy of calculated fundamental transitions in the high wavenumber region (800-4000 cm⁻¹) with respect to experimental data, achieved by different GGA and hybrid functionals with 6-311+G(d,p) basis set.

Table S1. The experimental and calculated wavenumbers of vibrational transitions of 4-aminophenol in the range of 220-800 cm⁻¹. The theoretical results were obtained with B3LYP functional and aug-pc-2 basis set, within harmonic and anharmonic VPT2 [1] approaches. The assignments in bold are given according to Varsaniy's notation [2]. List of abbreviations used: i.p. – in plane, o.p. – out of plane.

		Experiment		B3LYP/aug-pc-2			
Mode	Assignment	$V_{exp}, \text{ cm}^{-1}$	Relative	harmonic	anharmonic	I _{harm} ,	Potential Energy Distribution
			Intensity, %	wavenumber,	wavenumber,	km/mol***	
				cm ⁻¹	cm ⁻¹		
26(1)	C-H o.p. wagging, 10a	792.0	58.8	810.0	796.1	5.9	HCCC torsion (87%)
27(1)	C-C-C i.p. bending, 12	759.5	100.0	773.0	757.4	16.8	CCC bend i.p. (36%), OC stretch (16%), CC stretch (11%)
	Comb. 33(1)+36(1)*	735.0	21.3	768.8	767.3	1.1	
	NH ₂ wagging overtone 0-3	711.0	37.5				
28(1)	Ring puckering, 4	676.5	56.3	727.3	712.1	5.8	CCCC, CCCN o.p. torsion (67%)
29(1)	C-C-C i.p. bending, 6b	645.5	6.3	662.2	654.8	0.3	CCC, CCO, CCN bend i.p. (79%), CC stretch (16%)
	Comb. 32(1)+30(1)***	532.0	22.5				
30(1)	NH ₂ wagging fundamental**	-	-	616.2	484.8	268.3	HNCC torsion o.p. (73%), HNH bend (11%)
31(1)	C-C-C o.p. bending, 16b	502.0	81.3	517.7	506.0	56.7	NCCC, OCCC bend o.p. (82%)
	OH rock overtone 0-2	478.0	42.5				
32(1)	C-C-C i.p. bending, 6a	472.0	12.5	474.4	469.4	0.3	CCC bend i.p. (70%), CC stretch (16%)
	NH ₂ wagging overtone 0-2	467.0	42.5				
	NH ₂ torsion overtone 0-2	462.0	53.8				
33(1)	C-O, C-N i.p. bending, 9b	370.0	30.0	439.3	437.9	6.5	CCO, CCN bend i.p. (91%)
34(1)	C-C-C o.p. bending, 16a	422.0	45.0	426.5	418.0	1.3	CCCC torsion o.p. (83%)
35(1)	C-O, C-N o.p. bending, 10b	350.0	23.8	358.2	351.3	7.0	CCCN torsion o.p. (88%), CCCC torsion o.p. (13%)
36(1)	C-O, C-N i.p. bending, 15	326.5	18.8	329.5	328.8	3.4	CCO,CCN i.p. bend (82%)
37(1)	OH wagging	254.5	76.3	294.9	254.3	93.9	HOCC torsion (96%)
38(1)	NH ₂ torsion	237.0	53.8	245.8	244.6	18.5	HNCC torsion (97%)
39(1)	C-C-C o.p. bending, 11	-	-	150.2	147.3	2.5	CCCC torsion (77%)

** NH₂ wagging fundamental 30(1) is expected to have the value of 30-60 cm⁻¹ according to aniline and halosubstituted anilines studies [3,4]

*** Theoretical intensities of overtone and combination bands were taken when available from anharmonic VPT2 treatment.

Table S2. The experimental and calculated wavenumbers of vibrational transitions of *trans* 2-aminophenol in the range of 220-800 cm⁻¹. The theoretical results were obtained with B3LYP functional and aug-pc-2 basis set, within harmonic and anharmonic VPT2 [1] approaches. The assignments in bold are given according to Varsaniy's notation [2]. List of abbreviations used: i.p. – in plane, o.p. – out of plane.

		Experimen	nt	B3LYP/aug-pc-	-2		
Mode	Assignment	$V_{exp}, \mathrm{cm}^{-1}$	Relative	harmonic	anharmonic	I _{harm} ,	Potential Energy Distribution
			Intensity, %	wavenumber,	wavenumber,	km/mol***	
				cm ⁻¹	cm ⁻¹		
26(1)	ring breathing, 1	767	14.3	778.3	768.0	5.7	HOC bend i.p. (20%), CC stretch (16%, 16%), CCC bend i.p. (16%)
27(1)	C-H o.p. in phase, 11	737.5	100.0	751.0	737.3	44.2	HCCC torsion (55%), CCCC torsion o.p. (25%)
28(1)	Ring puckering, 4	748.5	49.3	747.0	730.6	42.0	CCCC torsion o.p. (48%), HCCC torsion (33%)
	NH ₂ wagging overtone 0-3*	696	17.1				
	NH ₂ torsion overtone 0-2*	653	15.0	693.7	664.8	1.0	
29(1)	C-C-C i.p. bending, 6a	542	9.3	596.8	590.5	3.9	CCC bend i.p. (51%)
30(1)	NH ₂ wagging fundamental**	-	-	586.4	526.6	58.3	HNCC torsion, CCN,CCO o.p. bend (66%)
31(1)	C-C-C o.p. bending, 16a	501.0	15.0	561.3	477.0	129.2	HNCC torsion, CCN,CCO o.p. bend (54%), CCC bend o.p. (10%)
32(1)	C-C-C in plane bending, 6b	486 453	11.8 9.3	538.3	491.1	57.7	HNCC torsion (22%), CCC bend i.p. (19%)
33(1)	C-C-C out of plane bending, 16b	445.5	57.1	457.1	446.2	22.8	CCCC, CCCN, CCCO torsion o.p. (66%, 18%)
	NH ₂ wagging overtone 0-2*	437.0	10.0				
34(1)	C-N, C-O in plane bending, 9b	351.0	18.6	446.0	441.1	2.7	CCO, CCN bend i.p. (68%)
35(1)	NH ₂ torsion	323	28.6	346.8	339.3	21.5	HNCC torsion (83%)
36(1)	C-N, C-O i.p. bending, 15	303	20.0	314.6	317.3	10.9	CCO,CCN,CCC bend i.p. (79%)
37(1)	OH wagging	286.5	17.9	310.7	291.5	55.8	HOCC torsion (75%), CCCC torsion o.p. (13%)
38(1)	C-N, C-O o.p. wagging, 10a	256	32.1	278.1	274.0	48.0	CCCC,CCCO,CCCN torsion o.p. (59%, 17%),
							HOCC torsion (17%)
39(1)	C-C-C o.p. bending, 10b	-	-	184.2	184.2	1.6	CCCC torsion o.p. (80%)

** NH₂ wagging fundamental 30(1) is expected to have the value of 30-60 cm⁻¹ according to aniline and halosubstituted anilines studies [3,4]

*** Theoretical intensities of overtone and combination bands were taken when available from anharmonic VPT2 treatment

Table S3. The experimental and calculated wavenumbers of vibrational transitions of *trans* 3-aminophenol in the range of 220-800 cm⁻¹. The theoretical results were obtained with B3LYP functional and aug-pc-2 basis set, within harmonic and anharmonic VPT2 [1] approaches. The assignments in bold are given according to Varsaniy's notation [2]. List of abbreviations used: i.p. – in plane, o.p. – out of plane.

		Experiment		B3LYP/aug-pc-2			
Mode	Assignment	$V_{exp}, \mathrm{cm}^{-1}$	Relative	harmonic	anharmonic	I _{harm} ,	Potential Energy Distribution
			Intensity,	wavenumber,	wavenumber,	km/mol***	
			%	cm ⁻¹	cm ⁻¹		
26(1)	C-H o.p. in phase, 11	755	100.0	768.7	753.8	35.7	HCCO,HCCN,HCCC torsion o.p. (82%)
27(1)	ring breathing, 1	745	24.3	759.4	748.8	2.9	CC stretch (45%), CCC bend (22%,12%)
	NH ₂ wagging overtone 0-3*	715	24.3				
	Comb. 39(1)+30(1)*	698	20.3				
28(1)	Ring puckering, 4	678	55.4	698.7	685.3	29.2	CCCC torsion o.p. (76%)
29(1)	C-C-N, C-C-O o.p. bending, 16a	612	10.8	636.2	607.4	18.1	CCCN,CCCO o.p. bend (82%)
	Comb. 37(1)+36(1)*	602	23.0	640.2	633.7	11.2	
	Comb. 37(1)+38(1)*	542	10.8	543.0	537.4	3.7	
30(1)	C-C-C i.p. bending, 6a	432	9.5	555.0	517.3	44.7	CCC bend i.p. (40%), HNCC torsion (19%)
31(1)	C-C-C i.p. bending, 6b	427	29.7	535.4	484.4	66.0	CCC bend i.p. (56%), HNCC torsion (18%)
	NH ₂ wagging overtone 0-2*	419	67.6				
32(1)	NH ₂ wagging**	-	-	525.9	426.3	156.8	HNCC torsion (43%), CCC bend (15%), NC,OC stretch
							(10%)
33(1)	C-C-C out of plane bending, 16b	459	24.3	465.4	463.8	4.1	CCCC torsion o.p. (64%), CCC,CCN,CCO bend (17%)
34(1)	C-N, C-O in plane bending, 15	449	12.2	462.3	449.8	19.8	CCC,CCN,CCO bend i.p. (68%), CCCC torsion o.p. (11%)
	39(2), 10b overtone*	409	5.4				
	37(1)+32(1)***	385	6.8				
35(1)	OH wagging	316	74.3	355.9	328.1	88.9	HOCC torsion (95%)
36(1)	C-N, C-O i.p. bending, 9a	325	14.9	328.1	324.3	2.0	CCN,CCO bend i.p. (49%), HNCC torsion (31%)
37(1)	NH ₂ torsion	329	21.6	312.1	312.8	19.8	HNCC torsion (59%), CCN,CCO bend i.p. (27%)
	37(1)-32(1)****	274	10.3				
	35(1)-32(1)***	262	14.8				
38(1)	C-C-C o.p. bending, 10a	-	-	230.8	224.7	0.6	CCCC torsion o.p. (80%)
39(1)	C-C-C o.p. bending, 10b	-	-	217.9	212.9	12.9	CCCC,CCCN,CCCO torsion o.p. (79%,10%)

** NH₂ wagging fundamental 32(1) is expected to have the value of 30-60 cm⁻¹ according to aniline and halosubstituted anilines studies [3,4]. Our estimation for *trans*

3-aminophenol is ~55 cm⁻¹ obtained from the tentatively assigned combination bands 262, 274 and 385 cm⁻¹ (sum and difference frequency)

*** Theoretical intensities of overtone and combination bands were taken when available from anharmonic VPT2 treatment

Table S4. The experimental and calculated wavenumbers of vibrational transitions of *cis* 3-aminophenol in the range of 220-800 cm⁻¹. The theoretical results were obtained with B3LYP functional and aug-pc-2 basis set, within harmonic and anharmonic VPT2 [1] approaches. The assignments in bold are given according to Varsaniy's notation [2]. List of abbreviations used: i.p. – in plane, o.p. – out of plane.

		Experimen	ıt	B3LYP/aug-pc-2			
Mode	Assignment	$V_{exp}, \text{ cm}^{-1}$	Relative	harmonic	anharmonic	I _{harm} ,	Potential Energy Distribution
			Intensity,	wavenumber,	wavenumber,	km/mol***	
			%	cm ⁻¹	cm^{-1}		
26(1)	C-H o.p. in phase, 11	766	100.0	776.7	760.5	20.8	HCCN,HCCO,HCCC torsion o.p. (91%)
27(1)	ring breathing, 1	748	43.1	762.0	750.0	5.3	CCC bend (41%,17%), CC stretch (18%), NC,OC stretch (10%)
	NH ₂ wagging overtone 0-3*	717	37.9				
	Comb. 38(1)+33(1)*	700	44.8				
28(1)	Ring puckering, 4	679.5	72.4	698.7	685.6	25.1	CCCC torsion o.p. (71%), HCCN torsion (15%)
29(1)	C-C-N, C-C-O o.p. bending, 16a	604	17.2	635.8	604.3	17.5	CCCN,CCCO torsion o.p. (86%)
	Comb. 37(1)+36(1)*	580	31.9				
30(1)	NH ₂ wagging*	-	-	557.4	481.0	112.6	HNCC torsion (40%), CCC bend (13%,10%)
31(1)	C-C-C i.p. bending, 6a	434	32.8	540.4	468.2	98.5	CCC bend i.p. (12%,13%), NC,OC stretch (11%), HNCC
							torsion (30%)
32(1)	C-C-C i.p. bending, 6b	430	50.0	529.4	500.2	51.7	CCC bend i.p. (59%), NC,OC stretch (13%)
	NH ₂ wagging overtone 0-2*	422	84.5				
33(1)	C-N, C-O in plane bending, 15	461	27.6	467.2	465.6	13.8	CCC,CCN,CCO bend i.p. (83%)
34(1)	C-C-C out of plane bending, 16b	446	43.1	460.2	451.1	28.1	CCCC,CCCN,CCCO torsion o.p. (75%)
	35(1)+32(1)***	348	17.2				
35(1)	OH wagging	307	124.1	348.3	317.2	90.0	HOCC torsion (95%)
36(1)	C-N, C-O i.p. bending, 9a	312	20.7	323.9	321.2	4.8	CCN,CCO bend i.p. (66%), CC stretch (11%)
37(1)	NH ₂ torsion	318.5	29.3	301.7	299.7	14.0	HNCC torsion 86%)
	37(1)-32(1)***	268	19.0				
	35(1)-32(1)***	256	23.4				
38(1)	C-C-C o.p. bending, 10a	-	-	230.0	223.8	1.3	CCCC torsion o.p. (84%)
39(1)	C-C-C o.p. bending, 10b	-	-	218.9	214.0	4.5	CCCC,CCCN,CCCO torsion o.p. (83%)

** NH₂ wagging fundamental 30(1) is expected to have the value of 30-60 cm⁻¹ according to aniline and halosubstituted anilines studies [3,4]. Our estimation for *cis* 3-aminophenol is \sim 50 cm⁻¹, and was obtained from the tentatively assigned combination bands 256, 268 and 348 cm⁻¹ (sum and difference frequency)

*** Theoretical intensities of overtone and combination bands were taken when available from anharmonic VPT2 treatment

Fig. FS1. Comparison between the accuracy of calculated fundamental transitions in the high wavenumber region ($800-4000 \text{ cm}^{-1}$) with respect to experimental data, achieved by different GGA and hybrid functionals with 6-311+G(d,p) basis set. The root mean square (RMS) errors were calculated based on 50 unequivocally assigned mid-IR fundamental transitions from literature data for the studied aminophenol isomers.

References:

- 1. V. Barone, M. Biczysko and J. Bloino, Phys. Chem. Chem. Phys., 2014, 16, 1759–1787.
- 2. G. Varsanyi, Vibrational Spectra of Benzene Derivatives, edited by G. Varsanyi, Academic Press, 1969.
- 3. R. A. Kydd and P. J. Krueger, Chem. Phys. Letters, 1977, **49**(3), 539.
- 4. R. A. Kydd and P. J. Krueger, J. Chem. Phys., 1978, 69(2), 827.