Supporting Information

Fluorescence-detected Circular Dichroism Spectroscopy of

Jet-cooled Ephedrine

Aram Hong, Changseop Jeong, Heeseon Jang, Myoung Choul Choi, Jiyoung Heo, and Nam Joon Kim

Equation estimating the asymmetry factor g_{i} :

The numbers of the excited molecules by LCP and RCP pulses are given by

$$
\begin{align*}
& N_{e x c}^{L}=N_{0} \sigma_{e x c}^{L} \tag{1}\\
& N_{e x c}^{R}=N_{0} \sigma_{e x c}^{R} \tag{2}
\end{align*}
$$

, where N_{0} is the number of molecules in the irradiated volume and $\sigma_{\text {exc }}$ is the cross section for excitation of molecules. With the assumption that the fluorescence quantum yield parallels its absorbance, the asymmetry factor g_{f} is given by

$$
\begin{equation*}
g_{f}=\frac{2\left(N_{e x c}^{L}-N_{e x c}^{R}\right)}{\left(N_{e x c}^{L}+N_{e x c}^{R}\right)}=\frac{2\left(\sigma_{e x c}^{L}-\sigma_{e x x}^{R}\right)}{\left(\sigma_{e x c}^{L}+\sigma_{e x c}^{R}\right)} \tag{3}
\end{equation*}
$$

Then, the numbers of ions produced by LCP and RCP pulses using R2PI are given by

$$
\begin{align*}
& N_{i o n}^{L}=N_{e x c}^{L} \sigma_{\text {ion }}^{L}=N_{0} \sigma_{e x c}^{L} \sigma_{i o n}^{L} \tag{4}\\
& N_{\text {ion }}^{R}=N_{e x c}^{R} \sigma_{\text {ion }}^{R}=N_{0} \sigma_{\text {exc }}^{R} \sigma_{\text {ion }}^{R} \tag{5}
\end{align*}
$$

, where $\sigma_{\text {ion }}$ is the cross section for photoionization of molecules from the excited state. The asymmetry factor $g_{\mathrm{r} 2 \mathrm{pi}}$ is given by

$$
\begin{equation*}
g_{r 2 p i}=\frac{2\left(N_{i o n}^{L}-N_{i o n}^{R}\right)}{\left(N_{i o n}^{L}+N_{i o n}^{R}\right)}=\frac{2\left(\sigma_{e x c}^{L} \sigma_{i o n}^{L}-\sigma_{e x c}^{R} \sigma_{i o n}^{R}\right)}{\left(\sigma_{e x c}^{L} \sigma_{i o n}^{L}+\sigma_{e x c}^{R} \sigma_{i o n}^{R}\right)} \tag{6}
\end{equation*}
$$

Then, the asymmetry factor for one-photon ionization of the excited molecules, g_{i}, is given by

$$
\begin{equation*}
g_{i}=\frac{2\left(N_{e x c} \sigma_{i o n}^{L}-N_{e x c} \sigma_{i o n}^{R}\right)}{\left(N_{e x c} \sigma_{i o n}^{L}+N_{e x c} \sigma_{i o n}^{R}\right)}=\frac{2\left(\sigma_{i o n}^{L}-\sigma_{i o n}^{R}\right)}{\left(\sigma_{i o n}^{L}+\sigma_{i o n}^{R}\right)} \tag{7}
\end{equation*}
$$

By introducing the parameters of α and $\beta, \sigma_{\text {exc }}^{R}$ and $\sigma_{i o n}^{R}$ are given by

$$
\begin{align*}
& \sigma_{e x c}^{R}=\alpha \sigma_{e x c}^{L} \tag{8}\\
& \sigma_{i o n}^{R}=\beta \sigma_{i o n}^{L} \tag{9}
\end{align*}
$$

The α and β represent the differences in the cross-sections for LCP and RCP pulses. The replacement of $\sigma_{\text {exc }}^{R}$ and $\sigma_{i o n}^{R}$ with Eqns. (8-9) gives

$$
\begin{align*}
& g_{f}=\frac{2\left(\sigma_{e x c}^{L}-\alpha \sigma_{e x c}^{L}\right)}{\left(\sigma_{e x c}^{L}+\alpha \sigma_{e x c}^{L}\right)}=\frac{2(1-\alpha)}{(1+\alpha)} \tag{10}\\
& g_{r 2 p i}=\frac{2\left(\sigma_{e x c}^{L} \sigma_{i o n}^{L}-\alpha \beta \sigma_{e x c}^{L} \sigma_{i o n}^{L}\right)}{\left(\sigma_{e x c}^{L} \sigma_{\text {ion }}^{L}+\alpha \beta \sigma_{e x c}^{L} \sigma_{\text {ion }}^{L}\right)}=\frac{2(1-\alpha \beta)}{(1+\alpha \beta)} \tag{11}\\
& g_{i}=\frac{2\left(\sigma_{i o n}^{L}-\beta \sigma_{i o n}^{L}\right)}{\left(\sigma_{i o n}^{L}+\beta \sigma_{i o n}^{L}\right)}=\frac{2(1-\beta)}{(1+\beta)} \tag{12}
\end{align*}
$$

Rearrangement of Eqns. (10-11) gives

$$
\begin{align*}
& \alpha=\frac{2-g_{f}}{2+g_{f}} \tag{13}\\
& \beta=\frac{1}{\alpha}\left(\frac{2-g_{r 2 p i}}{2+g_{r 2 p i}}\right) \tag{14}
\end{align*}
$$

α and β values are determined from the experimental g_{f} and $g_{\mathrm{r} 2 \mathrm{pi}}$ values. Then, the g_{i} value can be estimated using the Eqn. (12).

Table S1. Relative energies and Gibbs free energies, and rotatory strengths of -EPD conformers calculated at the M06-2X/6-311++G(d,p) level.

	$\Delta E_{\text {rel }}{ }^{a}$	$\Delta G_{\text {rel }}{ }^{a}$	R^{b}
$\mathrm{AG}(\mathrm{a})$	0	0	0.91
AG(b)	1.10	1.22	1.16
GG(a)	0.49	0.17	0.68
GG(b)	3.12	3.74	0.47

${ }^{a}$ Units in $\mathrm{kcal} / \mathrm{mol}$. Relative energies were calculated with zero-point energy corrections. The Gibbs free energies were calculated at $298 \mathrm{~K} .{ }^{b}$ Units in cgs ($10^{-40} \mathrm{erg} \cdot \mathrm{esu} \cdot \mathrm{cm} /$ Gauss).

Figure S1. Plots of $\log I_{\text {ion }}$ versus $\log P$ obtained by fixing the laser wavenumber at (a) the A and (b) B bands. $I_{\text {ion }}$ and P are the ion signal of the fragment at $\mathrm{m} / \mathrm{z}=58$ and the laser intensity, respectively.

Figure S2. (a) FE spectrum and (b) electronic spectrum of +EPD simulated using TDDFT at the M06-2X/6-311++G(d,p) level in consideration of Franck-Condon factors.

