Supporting Information

Fluorescence-detected Circular Dichroism Spectroscopy of

Jet-cooled Ephedrine

Aram Hong, Changseop Jeong, Heeseon Jang, Myoung Choul Choi, Jiyoung Heo,

and Nam Joon Kim

Equation estimating the asymmetry factor g_i:

The numbers of the excited molecules by LCP and RCP pulses are given by

$$N_{exc}^{L} = N_{0} \sigma_{exc}^{L}$$
(1)
$$N_{exc}^{R} = N_{0} \sigma_{exc}^{R}$$
(2)

, where N_0 is the number of molecules in the irradiated volume and σ_{exc} is the cross section for excitation of molecules. With the assumption that the fluorescence quantum yield parallels its absorbance, the asymmetry factor g_f is given by

$$g_f = \frac{2(N_{exc}^L - N_{exc}^R)}{(N_{exc}^L + N_{exc}^R)} = \frac{2(\sigma_{exc}^L - \sigma_{exc}^R)}{(\sigma_{exc}^L + \sigma_{exc}^R)}$$
(3)

Then, the numbers of ions produced by LCP and RCP pulses using R2PI are given by

$$N_{ion}^{L} = N_{exc}^{L} \sigma_{ion}^{L} = N_{0} \sigma_{exc}^{L} \sigma_{ion}^{L}$$
⁽⁴⁾

$$N_{ion}^{R} = N_{exc}^{R} \sigma_{ion}^{R} = N_{0} \sigma_{exc}^{R} \sigma_{ion}^{R}$$
⁽⁵⁾

, where σ_{ion} is the cross section for photoionization of molecules from the excited state. The asymmetry factor g_{r2pi} is given by

$$g_{r2pi} = \frac{2(N_{ion}^{L} - N_{ion}^{R})}{(N_{ion}^{L} + N_{ion}^{R})} = \frac{2(\sigma_{exc}^{L} \sigma_{ion}^{L} - \sigma_{exc}^{R} \sigma_{ion}^{R})}{(\sigma_{exc}^{L} \sigma_{ion}^{L} + \sigma_{exc}^{R} \sigma_{ion}^{R})}$$
(6)

Then, the asymmetry factor for one-photon ionization of the excited molecules, g_i , is given by

$$g_{i} = \frac{2(N_{exc}\sigma_{ion}^{L} - N_{exc}\sigma_{ion}^{R})}{(N_{exc}\sigma_{ion}^{L} + N_{exc}\sigma_{ion}^{R})} = \frac{2(\sigma_{ion}^{L} - \sigma_{ion}^{R})}{(\sigma_{ion}^{L} + \sigma_{ion}^{R})}$$
(7)

By introducing the parameters of α and β , σ_{exc}^{R} and σ_{ion}^{R} are given by

$$\sigma_{exc}^{R} = \alpha \sigma_{exc}^{L} \tag{8}$$

$$\sigma_{ion}^{R} = \beta \sigma_{ion}^{L} \tag{9}$$

The α and β represent the differences in the cross-sections for LCP and RCP pulses. The replacement of σ_{exc}^{R} and σ_{ion}^{R} with Eqns. (8-9) gives

$$g_{f} = \frac{2(\sigma_{exc}^{L} - \alpha \sigma_{exc}^{L})}{(\sigma_{exc}^{L} + \alpha \sigma_{exc}^{L})} = \frac{2(1 - \alpha)}{(1 + \alpha)}$$
(10)
$$g_{r2pi} = \frac{2(\sigma_{exc}^{L} \sigma_{ion}^{L} - \alpha \beta \sigma_{exc}^{L} \sigma_{ion}^{L})}{(\sigma_{exc}^{L} \sigma_{ion}^{L} + \alpha \beta \sigma_{exc}^{L} \sigma_{ion}^{L})} = \frac{2(1 - \alpha \beta)}{(1 + \alpha \beta)}$$
(11)
$$g_{i} = \frac{2(\sigma_{ion}^{L} - \beta \sigma_{ion}^{L})}{(\sigma_{ion}^{L} + \beta \sigma_{ion}^{L})} = \frac{2(1 - \beta)}{(1 + \beta)}$$
(12)

Rearrangement of Eqns. (10-11) gives

$$\alpha = \frac{2 - g_f}{2 + g_f} \tag{13}$$

$$\beta = \frac{1}{\alpha} \left(\frac{2 - g_{r2pi}}{2 + g_{r2pi}} \right) \tag{14}$$

 α and β values are determined from the experimental g_f and $g_{r_{2p_i}}$ values. Then, the g_i value can be estimated using the Eqn. (12).

	$\Delta E_{\rm rel}{}^a$	$\Delta G_{\mathrm{rel}}{}^a$	$R^{ m b}$
AG(a)	0	0	0.91
AG(b)	1.10	1.22	1.16
GG(a)	0.49	0.17	0.68
GG(b)	3.12	3.74	0.47

Table S1. Relative energies and Gibbs free energies, and rotatory strengths of -EPD conformers calculated at the M06-2X/6-311++G(d,p) level.

^{*a*}Units in kcal/mol. Relative energies were calculated with zero-point energy corrections. The Gibbs free energies were calculated at 298 K. ^{*b*}Units in cgs (10⁻⁴⁰ erg·esu·cm/Gauss).

Figure S1. Plots of log I_{ion} versus log P obtained by fixing the laser wavenumber at (a) the A and (b) B bands. I_{ion} and P are the ion signal of the fragment at m/z=58 and the laser intensity, respectively.

Figure S2. (a) FE spectrum and (b) electronic spectrum of +EPD simulated using TDDFT at the M06-2X/6-311++G(d,p) level in consideration of Franck-Condon factors.