Supporting Information

Al atom on MoO₃(010) surface: adsorption and penetration

using density functional theory

Hong-Zhang Wu*[†], Sateesh Bandaru[‡], Da Wang[‡], Jin Liu[†], Woon-Ming Lau*[§], Zhen-Ling

Wang*[†]

[†]The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal

University, Zhoukou 466001, China

[‡]Beijing Computational Science Research Center, Beijing 100084, China.

[§]Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu

Development Center of Science and Technology of CAEP, Chengdu, Sichuan, 610207, China.

The optimized structure parameters of Al atom at H site on MoO₃(010)

Lattice parameters of Al atom at H site on MoO ₃ (010)							
а	b	c	alpha	beta	gamma		
11.17288 11.5	2252 33.0624	9 90.0000	90.0000	90.0000			
	х	У	Z				
01	0.08333	0.17050	0.09890				
O2	0.08369	0.16119	0.38683				
O3	0.08531	0.99322	0.44611				
O4	0.25456	0.33022	0.37909				
O5	0.25001	0.01061	0.09127				
06	0.25086	0.18311	0.03194				
07	0.25000	0.17197	0.15785				
08	0.24594	0.16530	0.31133				
09	0.24582	0.32836	0.24976				
O10	0.08122	0.99406	0.32142				
011	0.08336	0.33094	0.16585				
012	0.08325	0.15503	0.22475				
013	0.41667	0.17000	0.09939				
014	0.41940	0.17419	0.39316				
015	0.41716	0.99944	0.44730				
016	0.58145	0.32907	0.36966				
O17	0.58328	0.01053	0.09134				
O18	0.58260	0.18303	0.03193				
019	0.58328	0.17183	0.15802				
O20	0.58521	0.15778	0.30981				
O21	0.58813	0.32059	0.24984				
O22	0.41661	0.99565	0.32085				
O23	0.41663	0.33159	0.16575				
O24	0.41607	0.15943	0.22510				
025	0.74983	0.17016	0.09900				

O26	0.74525	0.17357	0.39181
O27	0.74372	1.00000	0.44655
O28	0.91361	0.33110	0.38869
O29	0.91667	0.01058	0.09107
O30	0.91623	0.18311	0.03177
O31	0.91660	0.17163	0.15777
O32	0.91726	0.15891	0.31089
O33	0.91858	0.31671	0.24874
O34	0.74964	0.99473	0.32281
O35	0.75009	0.33046	0.16565
O36	0.75059	0.15492	0.22485
O37	0.08351	0.50328	0.09963
O38	0.08489	0.49339	0.38633
O39	0.09975	0.32560	0.44728
O40	0.25446	0.66237	0.37777
041	0.25023	0.34406	0.09191
042	0.25041	0.51584	0.03229
043	0.25005	0.50538	0.15857
044	0.24962	0.49734	0.30848
045	0.24677	0.66701	0.24959
046	0.07928	0.33145	0.31942
047	0.08310	0.66467	0.16576
048	0.08196	0.49323	0.22533
049	0.416/2	0.50345	0.09970
050	0.41649	0.49/91	0.37234
051	0.46417	0.38856	0.43884
052	0.5816/	0.66314	0.36801
053	0.58310	0.34395	0.09189
054	0.58312	0.51584	0.03228
055	0.58502	0.50504	0.15845
050	0.58622	0.49278	0.30032
057	0.38302	0.00238	0.24955
058	0.41557	0.52460	0.51/59
059	0.41008	0.00430	0.10570
061	0.41720	0.49310	0.22303
062	0.75361	0.30309	0.09955
063	0.75501	0.38837	0.37290
064	0.07377	0.58857	0.43621
065	0.91420	0.34390	0.09178
065	0.91698	0.51569	0.03226
067	0.91675	0.50489	0.15801
068	0.91143	0 49195	0.30718
069	0.91733	0.66041	0.24866
070	0 75399	0 32359	0.32111
071	0.75029	0.66399	0.16558
072	0.75162	0.49187	0.22536
073	0.08335	0.83625	0.09884
074	0.08439	0.82534	0.38727
075	0.09873	0.65484	0.44683
O76	0.25417	0.99702	0.37946
077	0.25013	0.67728	0.09201
O78	0.25108	0.84801	0.03186
O79	0.25002	0.83868	0.15772
O80	0.24621	0.82905	0.31084
O81	0.24933	0.99767	0.25295
O82	0.07976	0.65856	0.31871
O83	0.08326	0.99772	0.16380
O84	0.08250	0.83000	0.22452
O85	0.41666	0.83657	0.09933
O86	0.42058	0.82720	0.39272
087	0.46348	0.61838	0.43627
088	0.58084	0.99833	0.37828
089	0.58331	0.67722	0.09201
090	0.58217	0.84810	0.03185
091	0.58326	0.83837	0.15792
092	0.58499	0.82466	0.30991

093	0.58328	0.99062	0.25243
O94	0.41579	0.66727	0.31889
095	0.41667	0.99803	0.16527
096	0.41580	0.82787	0.22501
097	0.74984	0.83628	0.09882
098	0.74396	0.82756	0.39194
099	0.69530	0.61882	0.43574
O100	0.91253	0.99603	0.38080
0101	0.91662	0.67722	0.09184
0102	0 91656	0.84796	0.03168
0103	0.91648	0.83867	0 15739
0104	0.91640	0.82240	0.31203
0105	0.91464	0.98807	0.25346
0105	0.75342	0.66797	0.225540
0107	0.73342	0.00777	0.16418
0107	0.74909	0.82747	0.22471
A11	0.75097	0.82747	0.22471
Mo1	0.08200	0.00572	0.44038
Mo2	0.08300	0.96575	0.39493
Mo2	0.23013	0.19097	0.08510
Mod	0.24039	0.33810	0.30073
Mo4	0.08520	0.14965	0.1/349
Ma	0.41043	0.01330	0.39031
Moo	0.58512	0.1908/	0.08310
Ma ⁰	0.38579	0.51249	0.30108
Ma	0.41039	0.13071	0.1/58/
Mo10	0.74700	0.01460	0.39330
Mo11	0.91030	0.19088	0.08300
Mo12	0.91907	0.31310	0.29988
Mo12	0.73000	0.14933	0.17500
Mo14	0.08739	0.51957	0.39024
Mo14 Mo15	0.23022	0.52415	0.08551
Mo16	0.24307	0.07221	0.30007
Mo10	0.08554	0.46562	0.1/409
Mo19	0.42003	0.54840	0.38/38
Mo10	0.38330	0.32408	0.08530
M019	0.58529	0.64908	0.30048
M020	0.41090	0.48427	0.1/435
M021	0.74929	0.54842	0.38/82
Mo22	0.916/9	0.52406	0.08348
M025	0.91912	0.04849	0.29961
M024	0./5035	0.4831/	0.1/410
M025	0.08/40	0.65216	0.39577
M026	0.25020	0.85/33	0.08306
Mo27	0.24885	0.00621	0.30400
Mo28	0.08308	0.81/84	0.17338
Mo29	0.42017	0.67461	0.38644
M030	0.58310	0.85/27	0.08305
M031	0.58247	0.98102	0.30358
M032	0.41651	0.81763	0.17382
M033	0./4935	0.6/426	0.38671
M034	0.91656	0.85727	0.08288
M035	0.91568	0.97975	0.30455
M036	0.75001	0.81697	0.17354

Supporting Figure S1. The optimized configuration of Al atom at H site of $MoO_3(010)$ surface.

Supporting Figure S2. The PDOS of some oxygen atoms in the configuration of A1 atom at H site of $MoO_3(010)$ surface.

Supporting Figure S3. The PDOS of Al atom and some Mo atoms in the configuration of Al atom at H site of $MoO_3(010)$ surface.

The charge density difference is that the charge density of Al/MoO₃ subtracts that of Al atom and MoO₃(010). Al atom has three valence electrons; Mo and O atom both have six valence electrons.

The charge density of Al atom is smaller than that of Mo and O atom. The isovalues of the charge density are represented with 0.25 a.u for pure MoO₃, while the isovalues of the charge density are represented with 0.018 a.u for Al/MoO₃(010).

Supporting Figure S4. Isosurface (isovalues: 0.25 a.u) of the charge density of pure MoO₃.